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FOREWORD

The Statistical Reporting Service (SRS) has been engaged for

manyyears in the training of agricultural statisticians from around

the world. Most of these participants come under the support of the .

.Agency for International Development (AID) training programs; however,

many also comeunder sponsorship of the Food and Agr1cul,tur~.~.rganization
I .' " r' ,I ~ ..

into the International Statistical Programs Center of the Bureau of the

Census, with which SRSis c·ooperating.

This treatise was developed by the SRSwith the .cooperation of .

AID and the Center, in an effort to provide improved materials for.
"' " ,~

teaching and reference in the area of agricultural statistics, not

only for foreign students but also for ~evelopment of staff working

for these agencies.
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PREFACE

The author has felt that applied courses in s~lin~ should give more

attention to elementary theory of expected values of a random variable.

The theory .pertaining to a 'random variable and to functions of random

variables is the foundation for probability sampling. Interpretations

of the accuracy of estimates from probability sample surveys are predicated

on, amongother things, the theory of expected values.

There are many students with career interests in surveys and the

application of probability sampli~g who have very limited backgrounds in

mathematics and statistics. Training in sampling should go beyond simply
..

in mathematics and -probability should be included. It can (1) add 'mU:ch'

learning about sample designs in a descriptive manner.
•• I h •• ~

The foundations
-, .

• !..·I "

to the breadth of understanding of bias, random sampling error, components'
, '

of error, and other technical concepts; (2) enhance one's ability to make

practical adaptations of sampling principals and correct us~ of formulas;

and (3) make communication with mathematical statisticians easier and more

meaningful.

This monograph is intended as a reference for the convenience 6£

students in sampling. It attempts to express relevant, introductory

mathematics and p,robability in the context of sample surveys. Although

some proofs are presented, the emphasis is more on exposition of mathe-

matical language and concepts than. on 'the mathematics per se and rigorous

proofs. Manyproblems are given as exercises so a student may test his

interpretation or understanding of the concepts. Most of the mathematics

is elementary. If a formula looks involved, it is probably because it

represents a long sequence of arithmetic operations.

11
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Each chapter begins with very simple explanations and ends at a much

more advanced level. Most students with only high school algebra should

have no difficulty with the first parts of each chapter. Students with a

few courses in college ma~hematics and statistics ~ght review ~he: first

parts of each chapteT and spend considerable time studying the latter parts.

In fact, some students might prefer to start with Chapter III and refer to

Chapters I and II only as ~eeded.

Discussion of expected values of random variables, as in Chapter III,

was the original purpose of this monograph. Chapters I and II were added

as background for Chapter III. Chapter IV focuses attention on the dis-

tribution of an estimate which is the basis for comparing the accuracy

of alternative sampling plans as well as a basis for statements about the

accuracy of an estimate f.roma ,.amp~e•.. The content of Chapter IV is

. inclUded in books on sampling, but it is important that students hear or

read IIIOrethan one discussion of the distribution of an estimate, espe-

dally with reference to estimates from actual sample surveys.

The author's interest and experience in training has been primarily

with persons who had begun careers in agricultural surveys. I appreciate

the opportunity, which the Statistical Reporting Service has provided, to

..

prepa~ this monograph•

Earl E. Houseman
Statistician
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CHAPTER I. NOTATION AND SUMMATION

1.1 INTRODUCTION

To wprk with large amounts of data, .an appropriate system of notation

is needed. The notation must identify data by individual elements, and

provide meaningful mathematical expressions for a wide variety of summaries

from individual data. This chapter describes notation and introduces

summation algebra, primarily with reference to data from census and sample

surveys. The purpose is to acquai~t students with notation and summation

t' rather than to present statistical concepts. Initially some of the expres-

siona might seem complex or abstract, but nothiD:gmore than sequences of" II ..•••

operations involving addition, subtraction, multiplication, and division.
I •• ~- ,

is involved. Exercises are included so a student may test his interpreta-

tion of different mathematical expressions. Algebraic manipulations are

also discussed and some algebraic exercises are included. To a consider-'I ..

able degree, this chapter could be regarded as a manual of exercises for

students who are interested in sampling but are not fully familiar with

the sUllll1ationsymbol, E. Familiarity with -the mathematical language will

make the study of sampling mucheasier.

1. 2 NOTATION AND THE SYMBOL FOR SUMMATION

"Element" will be used in this monograph as a general expression for

a unit that a measurement pertains to. An element might be a farm, a per-

son, a school, a stalk·of com. or an animal. Such units are sometimes

called units of observation or reporting units. Generally, there are

several characteristics or items of information about an element that one

might be interested in.
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Il1easurement" or "value" will be used as general tel'lll8 for the

numerical value of a specified characteristic for an element. This

includes assigned values. For example, the element might be a farm and

the characteristic could be whether wheat is being grown or is not being

grown on a farm. A value of "lfl could be assigned to a farm growing wheat

and a value of flO" to a farm not growing wheat. Thus, the flmeasurement"

or "value" for a farm growing wheat would be fllfl and for a farm not grow-

ing wheat the value would be "0."

Typically, a set of measurements of N elements will be expressed as

follows: Xl' X2, ••• t~ where X refers to the characteristic that is

measured and the index (subscript) 'to the various elements of the popula':"

tion (or set)., For example, if there are N persons and the characteristic

X is a person's" height, then Xl is the height of the first p~rsont etc.

To refer to anyone of elements,· not a specific element, a subscript' '''i''

is used. Thus, Xi (read X sub i) means the' value of X for anyone of the

N elements. A commonexpression would be "Xi is the value of X for the'

i th element."

The Greek letter r (capital sigma) is generally used to indicate a

sum. Whenfound in an equation, it means "the sum of." For example,

N
L Xi represents the sum of all values of X from Xl to ~; that is,

i-I

N
L Xi - Xl + X2 +..•+ XN. The lower and upper limits of the index of

i-I

sunmation are shown below and above the summation sign. For example, to

20
specify the sum of X for elements 11 thru 20 one would write LXi.

i-II

.~'
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You might also see notation such as "E,Xiwhere i • 1, 2, ••• , Nil which

indicates there are N elements (or values) in the set indexed by serial

numbers l'thru N, or for part of a set you might see"EXi where i .,.11,

12, ••• ,20." Generally the index of summation starts with 1; so you will

N
often see a summation written as EXi• That is, only the upper limit of

i
the summation is shown and it is understood that the summation begins with

I~ i-1. Alternatively, when the set of values being summed is clearly under-:rl

:!~~.~, stood, the lower and upper limits might not be shown. Thus. it is under-
: I <' ,. I'~ ; :1 '•• ' ! •stood that EXi or EXi is the sum,of X over all v,a1ues of the set under

i

consideration. Sometimes a writer will even drop the subscript and use

EX for the sum of all values of X. Usually the simplest notation that is
~ 1 ~

adequate for the~purpose is adopted,. In this monograph, there will be
~ .. ' ~' '

some deliberate variation in notation to familiarize students with various

representations .of data.

An average is usually indicated by a "bar" over the symbol. For

example, X (read "X bar," or sometimes "bar X") means the average value of

mation makes it clear that the sum is being divided by the number of elements
EX

iHowever, Tand X is the average of all elements.

e'

".:; ~J,';;,

f
II
oJ

x. Thus, X •• In this case,showing the upper limit, N, of the sum-

would also be inter-

preted as the average of all values of X unless there is an indication to

the contrary.

Do not try to study mathematics without pencil and paper. Whenever

the shorthand is not clear, try writing it out in long form. This will

often reduce any ambiguity and save time.
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Here are some examples of mathematical shorthand:

,I'"

(1) Sum,of the reciprocals of X

(2) Sum of the differences. between-
Xi and ~ constant,C

(3) Sum of the deviations of Xi
from the average ~f X ,

NIl 1 1
1: X - X + X + ••• + 1L

i-I i 1 2 -""N

N •
E (Xi-C)-(XI-C)+(X2-C)+•••+(~-C)

i-I
N
E(Xi-X)-(Xl-i)+(X2-i)+•••+(~-X)
i

t., i I :.1

(4)

(5)

(6)

Sum of the absolute values 6f
• -' .'; I~'the ~ifferences between Xi'

and X. (Absolute value, .,' I~Iindicated by the vertical
lines. means the positive
value of the difference)

Sum of the squares of Xi
, I "[1'1'. I" , II'Sum of squares of the' "

deviations of X from i

2 222 2EXi - Xl + X2 + X3 + ••• XN
- 2 - 2 - 2teXt-X) - (~-X) + •••+ (~-X)

(7) Average of the squares of the
deviations of X from i -

- 2 - 2(Xl-X) + ••• +(~-X)

N

(8) Sum of products of X and Y

(9) Sum of quotients of X
divided by Y

(10) Sum of X divided by the
sum of Y

tXi Xl+X2+···+ ~--1:Yi Yl+Y2+···+ YN

(11) Sum of the first N digits

(12)

(13)

N
E i - 1+2+3+•••+ N

i-I
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Exercise 1.1. You are given a set of four elements having the
following values of X: Xl - 2, X2 - 0, X3 - 5, X4 - 7. To test your
understand'ing of the summation notation, compute the values of the follow-
ing algebraic expressions:

Expression Answer
4

(1) . t (Xi+4) 30
i-l

(2) t2(Xi-1) I,:' 20.,
I'

(3) 2t(X -1) ," 20
.1 f (

." "",' , '1-, "'I"'X • 'III' '.' ~, " ~~,,..2 I
';' II I. I< .' .; •••• ,~~ 91 I~!bl~ d .~ I l" • .11 ~ ;, '

(4) ~I" ! I. 27'tlK -11 ',' i

_ tX
1

.-
"(5) X-- , 3.5N

"- .
(6) tx2 781

(7) t(-X1)2 78

(8) [tx1]2 19'6-

(9) 2 64t(Xi - X1)

(10) t(X~) - tx 641

(11) ti (X1) 45

(12) t(-1)i(Xi) 0
4

(13) E (X~ - 3) 66
i-l

4 4
(14) E x2 - t (3) 66

i-l 1 i-l
4

Note: t (3) means find the sum of four 3's
i-l
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Definition 1.1. The variance of X where X - Xl' X2' ••• , ~, is

defined in one of two ways:

N
E(Xi-X)2 " I~ ,;..,

2 i-Ia = N , ..or

N ," .
S2 _ I (Xi-X)2

i-I
N-l

The reason for the ~iO definitions will be explained in Chapter III.

The variance formulas provide measures of how much the values of X vary

(deviate) from the average. The square root of the variance of X is

called the standard deviation of X. The central role that the above

definitions of variance and standard deviation play in sampling theory

will. become apparent as you study sampling. The variance of an estimate

from a sample is one of the measures needed to judge the accuracy of the

estimate and to evaluate alternative sampline designs. Much of the algebra

and notation in this chapter is related to computation of variance. For
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complex sampling plans, variance formulas are complex. This chapter

should help make the mathematics used in samplin~ more readable and more

meaningful when it is encountered.

Definition 1.2. "Population" is a statistical term that refers to

a set of elements from which a sample is selected ("Universe" is often

used instead of "Population").

Some examples of populations are farms, retail stores, students,

households, manufacturers, and hospitals. A complete definition of a

population is a detailed specification of the elements that compose it.

Data to be collected also need to be defined. Problems of defining popu-

lations to be surveyed should receive much attention in courses on. sampling.

From a defined population a sample of elements is selected, information
,

for each element in the sample is collected, and inferences from the sam-

pIe are made about the population. Nearly all populations for sample

surveys are finite so the mathematics and discussion in this monograph

are limited to finite populations.

In the theory of sampling, it is important to distinguish between

data for elements in a sample and data for elements in the entire popula-

tion. Many writers use uppercase letters when referring to the population

and lowercase letters when referring to a sample. Thus Xl' ••• ' ~ would

represent the values of some characteristic X for the N elements of the

population; and xl' ••• ' xn would represent the values of X in a sample of

n elements. The subscripts in xl' ••• ' xn simply' index the different

elements in a sample and do not correspond to the subscripts in Xl' ••• ' ~

which index the elements of the population. In other words, xi could be

anyone of the Xi' 8. Thus,



N
~ Xi
i--. XN

n
r Xi
i--. xn

represents the population mean, and

represents a sample mean

8

In this chapter we will be using only uppercase letters, except for

constants and subscripts, because the major emphasis is on symbolic repre-

sentation of data for a set of elements and on algebra. For this purpose,

it is sufficient to start with data for a set of elements and not be

concerned with whether the data are for a sample of elements or for all

elements in a population.

The letters X, Y, and Z are often used to represent different charac-
I:

teristics (variables) whereas the first letters of the alphabet are cOUIDOuly

used as constants. There are no fixed rules regarding notation. ' For

example, four different variables or characteristics might be called Xl' I.

th 'X2, X3, and X4• In that case Xli might be used "to represent the i value

of the variable Xl. Typically, writers adopt notation that is convenient

for their problems. It is not practical to completely standardize notation.

Exercise 1.2. In the list of expressions in Exercise 1.1 find the

much is the variance of X changed?

, l

""
2variance of X, that is, find S • Suppose that X4 is 15 instead of 7.

2 1Answer: From 9'3 to 44j .

How

Exercise 1.3.' You are given four elements having the following values

of X and Y

Y • 21 Y • 32 Y • 13 Y • 144
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Find the value of the following expressions:

Expression Answer Expression Answer

(1) tXiYi 107 (7) tXi-tYi -6

(2) (1:Xi)(1:Yi) 280 (8) 2 741:(Xi-Yi)

(3) 1:(Xi-X)(Yi-Y) 37 (9) I:(X2_y2) -132i i

(4) I:XiYi-NXY 37 (10) I:X2_ty2 -132i i

(5)
1 Xi 1.625 (11) 2 36- I:- [I:(Xi-Yi) ]N Yi

"(6),1 'I:(X' Y l)1I"1 4 " i:1I ,:1 '-6I!' " "(12) [I:X12-[tY ]2 -204' 1111 "_ ", 'I', i i i i

1.3 FREQUENCY DISTRIB11l'IONS
Several elements in a set of N might have the same value for some

characteristic X. For example, many people have the same age. Let Xj

L :'

~\,

••

be a particular age and let Nj be the number of people in a population
K

.(set) of N people who have the age Xj• Then I:Nj - N where K is the
j-1

number of different ages found in the population. Also I:NjXj is the sum;

I:NjXjof the ages of the N people in the population and ---- represents theI:N
j

average age of the N people. A listing of Xj and Nj is called the

frequency distribution of ~since N
j

is the number of times (frequency)

that the age X
j

is found in the population.

On the other hand, one could let Xi represent the age of the ith

individual in a population of N people. Notice that j was an index of age.

We are now using i as an index of individuals, and the average age would

I:X
ibe written as ~ The
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choice between these two symbolic representations of the age of people in

the population .is a matter of convenience and purpose.

Exercise 1.4. Suppose there are 20 elements in a set (that is, N - 20)

and that the values of X for the 20.elements are: 4, 8, 3, 7, 8, 8, ~, 3,

7, 2, 8, 4, 8, 8, 3, 7,8,10, 3, 8.

(1) List the values of X
j

and N
j
, where j is an index of the

values 2, 3, 4, 7, 8, and 10. This is the frequency

distribution of X.

(2) What is K equal to?

Interpret and verify the. following by making the calculations indicated:
" .

'.

(3)

(4)

N
EX-

i-l i
i) : i I,ll ::1 ',I . :.1

(5)

1. 4 ALGEBRA

:' In arithmetic and elementary algebra, the order of the numbers when

addition or multiplication is performed does not affect the results. The

familiar arithmetic laws when extended to algebra involving the summation

symbol lead to the following important rules or theorems:

Rule 1.2 E8.'{i- aEXi where.!. is a constant

Rule 1. 3 1:(Xi+b) - 1:Xi+Nb where b is constant
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If it is not obvious that the above equations are correct, write both

sides of each equation as series and note that the difference between the

two sides' is a matter of the order in which the summation (arithmetic) is

performed. Note that the use of parentheses in Rule 1. 3 means that b is

contained in the series N times. That is,

N
~ (Xi+b) - (Xl+b)+(X2+b)+"'+(XN+b)

i-l

"
On the basis of Rule 1.1, we can write

'!~ I

)
The expression

• I

N
E.b means"sum.the 'vaitie ~f b,which occurs N times. 11 Therefore,

i-I

N
~ b - Nb.

i-l
N

Notice that if the expression had been E Xi+b,then b is an amoun~ to add
i

N
to the sum, ~ Xi •

i.
N N

In many equations X will appear; for example, E XXi or E (Xi-X).
i i

Since X is constant with regard to the summation, EXxi
tX

~(Xi-X) - 1: X -tx - tx - _ i i
NX. By definition,X - -;- •

i i i i i i

NX• tXi and t(Xi-X) - O.
i i

- itxi• Thus,

Therefore,

N
To work with an expression like ~(Xi+b)2 we must square the quantity

i
in parentheses before summing. Thus,
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E(Xi + b)2 - E(X~+ 2bXi + b2)
i

• EX~7 E2bXi + Eb2 Rule 1

• EX~+ 2bEXi + Nb2 Rules 2 and 3

Verify this result by using series notation. 2 2Start with (Xl+b) +••• +(XN+b) •

It is very important that the ordinary rules of algebra pertaining to

the use of parentheses be observed. Students frequently make errors

because inadequate attention is given to the placement of parentheses or

to the interpretation of parentheses. Until you become familiar with the

above rules t practice translating shorthand to series and series to sbort-

hand. Study the followin~ examples' carefully:

The left-hand side is the sum of

the squares of Xi. The right~hand

side is the square of the sum of Xi·

On the right the parentheses are

necessary. The left side could
2have been written EXi •

Rule 1.2 applies.

2 2

(2) {Xi} IXi
N 2'N

(3) 2 EX2+ Ey2
,'" I , '.-:: ),~.:, E(Xi+Yi) ~ 1 i

(4) E(X2 + y2) • EX2+ 1:y2
i i i i

(5) EXiYi ~ (1:Xi)(EYi)

A quantity in parentheses must be

squared before taking a sum.

Rule 1.1 applies

The left side is the sum of products.

The right side is the product of

(6)

(7)

sums.

N N
Ea(Xi-b) ~ &LXi- ab
i i



(8)
N N
ta(Xi-b) - a1:X - Nab
i i i

13

N N .
(9)' a[tXi-b] - atX -abi i i

(10)

Exercise 1.5. Prove the following:
In all cases, assume i - 1,2,•••, N.

(1) 't(X -X) - 0
i "

(2)
, ,
I~, J 'I

" " O:X
i
)2

(3)NX2 _ --
I" ~ I, I" N I, ", •• '-'. ".

" oj' ,~d' ".i ,N

(4) ,t (aXi+bYi+C) -.aI:Xi+btYi+NC
3, j 'i-l ,,' I, ,

..

(5)

(6)

(7)

,Note: Equations (5) and (6) should be (or become)
very familiar equations.

t(X _X)2 • tX2 _ NX2
i i

xt(...!+ Y )2 _.L t(X +aY )2
a i 2 i ia

The total number of elements in the
NOand N- Q. Prove that

(8) Let Yi - a+bXi, show that Y - a+bX
2 - 2 2and ty i - Na (a+2bX) + b tXi

(9) Assume that Xi - 1 for Nl elements of a set and that Xi - 0
for NO of the elements.

Nlset is N • Nl+NO' Let N - P
t(Xt-X)2

N • PQ •



(10) Hint:
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, ,' •. ~~' '-I, ,

- - 2as [(Xi-X)+(X-d)] • Recall from elementary algebra that

222 - -(a+b) - a +2ab+b and think of (Xi-X) as a and of (X-d)

as b~ For what value of d is E(Xi-d)2 a minimum?

1.5 DOUBLEINDEXES AND SUMMATION
When there is more tnan one characteristic for a set of elements,

the different characteristics might be distinguished by using a different

letter for each or by an index. For example, Xi and Yi might repres1ent

the number of acres of wheat planted and the number of acres of wheat
thharvested on the i farm. Or, Xij might be used where i is the index

for the characteristics and j is the index for elements; that is, Xij
thwould be the value of characteristic Xi for the j element. However,

, n : ~~'I :1
when data on each of several characteristics for a set of elements are

to be processed in the same way, it mighe Jlot be necessary to use

notation that distinguishes the characteristics. Thus, one might say

E(Xi-X)2
calculate N-1 for all characteristics.

More than one index is needed when the elements are classified accord-

ing to more than one criterion. For example, Xij might represent the value
th thof characteristic X for the j farm in the i county; or Xijk might be

th th ththe value of X for the k household in the j block in the i city.

As another example, suppose the processing of data-for farms involves

classification of farms by size and type. We might let Xijk represent

the value of characteristic X for the kth farm in the subset of farms

classified as type j and size i. If Nij is the number of farms classified
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as type j and size i,

NijE Xijk
kthen ---N----- - Xij• is the average value of X for

ij

• : :'; ,:~ •..:. .t""I!.;'

.,':l"'7~j~1•

.,,'

the subset of farms classified as type j and size i.

There are two general kinds of classification--cross classification

and hierarchal or nested classification. Both kinds are often involved

in the same problem. However, we will discuss each separately. An

example of nested classification is farms within counties, counties within

States, and States within regions. Cross classification means that the
, "1 '''''11 •data can be arranged in two 'ormore dimensions as illustrated in the next

section.

1.5.1 CROSS CLASSIFICATION
,,' ,: •. f

I ~t ~I • I '. "

As a specific illustration of cross classification and summation with
I' ,

two indexes, suppose we are working wit~ the acreages of K crops on a set
f N f Le X h of!the'ith crop on the jth farmo arms. t ij represent t e a~reage

where i-I, 2, •••, K and j - 1,2, ••• , N. In this case, the data could
I

I .'

be arranged in a K by N matrix as follows:

Column (j) RowRow (i) total
,,~;' ~~,~ 1 j N

1 XII Xlj XlN E Xljj

i XiI Xij XiN E Xij
· j· .·· .·· .

K ~I ... ~j ~ E ~j
j..

Column E Xu E Xij
I EE Xij: E XiN:

total i i i : ij
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N
The expression r Xij (or r Xij) means the sum of the values of Xij for a

j j

fixed value of i. Thus, with reference to the matrix, I Xij is the total
j

X could be written as

farms and crop acreages, I
th jwhatever the i crop is.

thof the values of X in the i row; or, with reference to the example about

Xij would be the total acreage on all farms of .
K

Similarly, I Xij (or I Xij) is the column total
i i

~ ~for the j c.olumn, which in the example is the total for the j farm of

the acreages of the K crops under consideration. The Bum of all values of
KN
I! Xij or !I Xij• ,
ij ij

Double SUDIllationmeans the sum of sums. Breaking a double sum into

parts can be an important aid to understanding it. Here are two examples:

KN N 10{ l{
(1) II Xij - I Xlj + I X2j +.•• + r ~j

ij j j j
(1.1)

With reference to the above matri~Equation (1.1) e~resses the grand total

as the sum of row totals.

(2) (1. 2)

In Equations (1.1) and (1.2) the-double sum is written as the sum of K

partial sums, that is, one partial sum for each value of i.

Exercise 1.6. (a) Write an equation similar to Equation (1.1) that

expresses the grand total as the sum of column totals. (b) Involved in

Equation (1.2) are KN terms, Xij(Yij+a). Write these terms in the form of

a matrix.



, "
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The rules given in Section 1.4 also apply to double summation.

Thus ,

Study Equation (1.3) with reference to the matrix called for in Exercise

1.6(b). To fully und~rstand Equation (1.3), you might need to write out...

intermediate steps for getting from the left-hand side to the right-hand

side of the equation.

To simplify notation, a system of dot notation is commonly used, for

example:

(1. 3)

The dot in Xi' indicates that an index in addition to i is involved and

Xi' is interpreted as the sum of 'the values of X for a fixed value of i.

Similarly, X.j is the sum of X for any fixed value of j, and X •• represents

a sum over both indexes. As stated above, averages are indicated by use of

a bar. Thus Xi. is the average of Xij for a fixed value of i, namely

- X and Xi· would represent the average of all values of Xij,

1:1: Xijnamely _i_j__
NK

Here is an example of how the dot notation can Simplify an algebraic

expression. Suppose one wishes to refer to the sum of the squares of the

row totals in the above matrix. 2This would be written as r(xi.) •
1

The sum



Without the dot notation the- 2of squares of the row means would be E(Xi.) •
i

K N 2 K
corresponding expressions would be !(!Xij) and!

i j i

important that the parentheses be used correctly.

18

2

It is very

K N 2
For example, !(!Xij) is

i j
KN2

not the same as !!Xij• Incidentally, what is the difference between the
ij

last two ~xpressions?:

Using the dot notation, the variance of the row means could be written

as follows:

(1.4)

where V stands for variance and V(X1) is an expression for tbe variance of

Xi•• Without the dot notation, or something equivalent to it, a formula

for the variance of the row means would look much more complicated.
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Find the value of the following algebraic expressions:

Expression Answer Expression Answer

N
(1) EXlj

j
42 54

(3)

6

21

18

78(11)

(10)

(12)

N .
(;1 (13)' ~E(X -X )2,

lj 1·
.. j .78

45

12

12

13.5

144
KN
EEXijij

X..
(7)

(6)

(5)

(4)

(2)

•...~~, . ~\~:,~''~~

~'.'~;~:~~~~~~~
" ":' ;"AJ.~~ I

K
(8) NE(X

i
-X )2

i ..• 18
(14) 60

Illustration 1.1. To introduce another aspect of notation, refer to

the matrix on Page 15 and suppose that the values of X in row one are to

be multiplied by aI' the values of X in row two by a2, etc. The matrix

would then be

~~l ••• ~~j ••• ~~

The general term can be written as aixij because the index of a and the
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index i in Xij are the same. The total of all KN values of aiXij is

KN
I:taiXij• Since ai is constant with respect to summation involving j,
ij

N
we can place a1 ahead of the summation symbol t •

j

Exercise 1.9. Refer to the matrix of values of Xij in Exercise 1.8.

' •••••••\. kl I .-1.

• ..,..,,'2

,·:,:~'··;!:t:,:,,:;~~~~(~ Calculate:

(1) ttaiXijij

(2) tt
aixij

ij N

(3) 2ttaiXijij

"I'
,/

,1'

Answer :-296

Show algebraically that:

(4) ttaiXij - tX3j-t~j
ij j j

(5) tE
aiXij - X -x

ij N 3· 1·

(6) 2 2 2rtaiXij - tX3j-txljj j

Exercise 1.10. Study the following equation and if necessary write

the summations as series to be satisfied that the equation is correct:

Illustration 1.2. ,Suppose

Yij • xij+ai+bj+c where i • 1, 2, ••• ,K and j - 1, 2, ••• ,N
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The values of Yij can be arranged in matrix format as follows:

Y11 - ~1 + a1+b1+c ••••••••• YlN - XlN + a1+bN+c

'Yij - Xij + ai+bj+c.
. . . .

Notice that ai is a quantity that varies from row to row but is constant

within a row and that bj varies from column to column but is constant

within a column. Applying the rules regarding the summation symbols we

have

-tXij + Nai + tb +Nc
j j

- tEXij + NEai + KIbj + KNc
'ij i j

".", r

Illustration 1. 3. Wehave noted that t (XiYi) does !!2! equal

(txi)(tYi). (See (1) and (2) in Exercise 1.3, and (5) on Page 12). But,

tEXiYj - (EXi)(EYj) where i - 1, 2, ••• ,K and j - 1, 2, ••• ,N. This becomes
ij i j

clear if we write the terms of tEXiYj in matrix format as follows:
ij

RowTotals
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The sum of the terms in each row is shown at the right. The sum of these

row totals is Xl :EYj+... + ~:EYj - (X1+... + ~)rY j - rXiEY j.
get the same final result by adding the columns first. Very often inter-

mediate summations are of primary interest.

Exercise 1.11. Verify that rrxi Y j - (:EXi)(:EYj) using the values of
ij

X and Y in Exercise 1.3. In Exercise 1.3 the subscript of X and the sub-
.script of Y were the same index. In the expression :ErXiYj that is no longer

ij
the case.

Exercise 1.12. Prove the following:

(1)

(2)

1.5.2 HIERARCHAL OR NESTED CLASSIFICATION

A double index does not necessarily imply that a meaningful cross

classification of the data can be made. For example, Xij might represent
th ththe value of X for the j farm in the i county. In this case, j simply

identifies a farm within a county. There is no correspondence, for example,

between farm number 5 in one county and farm number 5 in another. In fact

the total number of farms varies from county to county. Suppose there are
thK counties and Ni farms in the i county.

Nicounty could be expressed as Xi. - r Xij
j

The total of X for the ith
K

In the present case rXij is
i

meaningless.
KNiThe total of all values of X is r1: Xijij
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When the classification is nested, the order of the subscripts

(indexes) and the order of the sumnation symbols from left to right should

be from the highest to lowest order of classification. Thus in the above

example the index for farms was on the right and the summation symbol

KN
iinvolving this index is also on the right. In the expression 1:1: Xij,

ij
summation with respect to i cannot take place before summation with regard

the summations can be performed in either order.

to j. On the other hand, when the classification is cross classification

I' It,; '" . l~I' 1"

.,"'" rt: '~ :.! !. I t \

:i"l .~n'· "£l~H~l~f,

'Xll, X12,

th'i"Inthe examp~e of '~~,'co~ties and Ni farms in the i county ,and in

data as ~eingarranged in rows (or
, , 'similar exampfes, you may ~hink C?f the

1I,.".l •••S..ll ~ II " •• ~ '~~.J' ~ I> ~ t.~~I, •• ~, I' ' .•• ,.

,columns):
, ' ~r

...
!~J •.z., , X

2,,' N
2

., ,!,'

~l' ~2' ••••

Here are two double sums taken apart for inspection:
,

I ~ <

(1) = ~l(X -x )2
j lj ••

( V )

Nl 2 - 2 21: (Xlj-X ••) - (Xll-X ••) +...+ (XlN -X ••)
j 1

(1. 5)

Equation (1.5) is the sum of squares of the deviations, (Xij-X ••), of all

values of Xij from the overall mean.
K

There are 1:Ni values of Xij' and
i



a single index would be sufficient.

x..
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If there was no interest in identifying the data by counties,

N _ 2
Equation (1.5) would then be r(Xi-X) •

i

(2) (1. 6)

Nl - 2 - 2 - 2
r (Xlj-X!.) - (XII-Xl.) +••• + (XlN -Xl.)
j 1

Nl - 2
With reference, to Equation :(1.6) do. you .re<:ognize t (~j-Xl'>? It involves

. j

only the subset of elements for' 'which i '. 1~ namely XII ~ X12, •••

that Xl. is the average value of X in

XlN• Note
1

Nl - 2
this subset. Hence, r (Xlj-~'> is

'" .j

the sum of the squares of the deviations of the' X's in this subset from the

subset mean. The double sum is the SUlll of K terms and each of the K terms

is a sum of squares for a subset of X' s, the index for the subsets be.ing i.

thExercise 1.13. Let Xij represent the value of X for the j farm in

ththe i county. Also, ,let K be the number of counties and Ni be the number

thof farms in the i county. Suppose the values of X are as follows:

Xl3 - 5

X33 • 1

Find the value of the following expressions:

Expression Answer

9
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Expression (Continued) Answer

(2)
KNi 27EE Xijij

(3) X - - and X 27 3- -
(4)

N1 aX 9E X1j 1-j
(5) X

2
_ and X

3
_ 10 8

(6) X1_, X2_, and X3_ 3 5 2.

(7)
ENiXi_

3!Ni "", !,~1:] :1: I,. ,i. ') lili' i! ,.,,' ·1 I I :: ~,I : ' :
I" ' .1 :;"'I~I I'',I,'

j 'l~l' • 1

1

24

I' •
:. ~~ 11

~It~1~:"I 'I!'
•••••• I"

8, 2, and 14 for i - 1, 2,
and 3 respectively

8

" .,,1245(8)
K N~ 2 .K 21:(1:ij) or 1:Xi_
i j i

(9) - 21:1:(Xij-X_.)
ij ,

(10) N1 - 21:(X1j-X1)
j

(11) Ni - 2E (Xij-Xi)j
I • ~~:, ':" •• .., KNi - 2

, (12) E1:(Xij-Xi.).. ij
K

(13) - - 2 121:Ni(Xi·-X••)
i

KUixijJ miXijr
(14) L Ni ENj

12
i
K

(15) 1:NX2 _NX2 12i i •..i
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Expressions (14) and (15) in Exercise 1.13 are symbolic representations

of the same thing. By definition

K
,and tNi - N

i

Substitution in (14) gives

, . ~,

,~I~~. '~:"\' t~~~ ~. ~

';·f:~~r~1,.
~~~~??~~'~$:

X
and ~ • 3(N ••

(1. 7)

K
Hence, by substitu:tion, Equation (1.7) becomes tN 3(2 - Ni2.i i· .•

i

"
, • ' I~ ~,, '

Exercise 1.14. 'Prove the following: L':

KNi K
(1) • tx2tt Xi.Xij i·ij i.

KN
(2) . i- -

• 0tt Xi. (Xij-Xi.>ij

K K
(3) , - - 2 -2-2·m (X -X ) - tN X -NX1 i i··· i i i· ••

Note that this equates (13) and (15) in Exp.rcise 1.13.

The proof is similar to the proof called for in part (5)

of Exercise 1.5.

1.6 THE SQUARE OF A SUM

In statistics, it is often necessary to work algebraically with the

square of a sum. For example,

22222
(I:Xi) - (Xl+X2+·· .+~) - X1+XlX2+··.+X2+X2Xl+···+XN+Yl+···



, .'
~r:l~.':I~:-;~;Il~~:~
~~~;,~~'
t>~:,'J'~"
.:~tf~~~~:~.~~:i;t

~ I

i
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The terms in the square of the sum can be written in matrix form as

follows:

The general term" i,~ this matrix is XiXj where Xi, and Xj come from the same

set of XiS, namely, Xl' ••• '~. Hence, i and j are indexes of the same set.

Note that the terms along the main diagonal are the squares of the value

of X and 2 That is, on the main diagonal i = jcould be w,rit ten ..,as,: EXi •

and XiXj
2 The remaining all products of one value- XiXi - Xi terms are

of X with some other value of X. For these terms the indexes are never

equal. Therefore, the sum of all terms not on the main diagonal can be

expressed as EXiX
j
where i ;. j is used to express the fact that the summa-

i;j

tion includes all terms where i is not equal to j, that is, all terms other

than those on the main diagonal. Hence, we have shown that (EXi)2 -

2EXi + EXiXj
i;j

Notice the symmetry of terms above and below the main diagonal:

XlX2 - X2Xl,XlX3 - X3Xl ,etc. Whensymmetry like 'this occurs, instead of

EXiXj you might see an equivalent expression 2E XiX
j
• The sum of all

i~ i~
terms above the main diagonal is 1: XiX

j
• Owin~ to the symmetry, the sum

i<j
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of the terms below the main diagonal is the same. Therefore, ~ XiXj •
i+j

2 1: Xi Xj •
i<j

Exercise 1.15.

matrix format. Let Xl • 2, X2 • 0, X3 • 5,

of ~X~ ' 2 1: XiXj t and [l:Xi]2. Show that
i<j

and X4 • 7. Com~ute the values
2 2[l:Xi] • l:Xi + 2 l:XiXj •

'f<j

An important re~1U1t, which we w.ill use in Chapter 3, follows from the

fact that , . : ~

(1. 8)

, / • J II ~' ,1 :

[l:(Yi-i»)2 • !(yi-y)2 + l: (Yi-Y)(Yj-Y)
i+j

, _ ' t2 .1
"

. I. ~ ~.~ "

We know that [l:(Yi-Y») • 0 because l:(Yi:"Y)- 0.' 'The'refore,
'. I' I ':'. ,;, t"'

l:(Yi-y~2 + l: (Yi-Y)(Yj-Y~ • 0
,>, i+j 'I'

It follows that ~ (y -Y)(Y -Y) • -1:(Y _i)2
i+ji j i

Exercise 1.16. Consider

(1. 9)

Do you agree that l:y2 • N(N-l)y2? With reference to the matrix layout,
i,cj

-2 2Y appears N times but the specification is i + j so we do not want to
-2count the N times that Y is on the main diagonal. Try finding the values

of ~ Xi and ~ Xj and then show that
i+j i+j



Hint: Refer to a matrix l~yout.
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In t Yi how many times does Yl appear?
i"j

Does Y2 appear the same number of times?
• 1 I

1.7 SUMS OF sQuAREs
For various reasons statisticians are interested in components of

- .
t, 1 ?'JI'I' t ••!, ...,_~. ,. . :.'. ~~ : ~ .

To be somewhat speCific; reference.is ,made to the- ex-ample of K counties
.. ; • .r-

and Ni farms in the' i,th_ co~ty.;'- The':'sum~f_ the,. squareS' o~ the deviations

variation, that i~?imeasuring the amoun~of variation attributable to each

of more than one source. This involves computing sums of squares that

correspond to the different sources of variation that are,of interest'.

Wewill discuss a simple 'example of. ,it~.te.'d .classification and a simPle' " ,'..
,~

'1
\

"

I

example of cross' classification.

1.7.1 NESTEDCLASSIFICATION ') : i.., .

•• ~. I -. ~I .:' : I ~ ,

of Xij and X•• can be divided into two parts as shown by the following

formula:

(1.10)

.'

The quantity on the left-hand sid~ of Equation (1.l0)'is called the

total sum of squares. In Exercise 1.13, Part (9), tne total sum of squares

was 36.

The first quantity on the right-hand side of the equation involves the,

squares of (Xi. -X•• ), which are deviations of the class means from the over-
, I

all mean. It is called the between class sum of squares or with reference

to the example the between county sum of squares. In Exercise 1.13,

Part (13), the between county sum of squares was computed. The answer was

12.
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The last term is called the within sum of squares because it involves

deviations within the classes from the class means. It was .presented

previously. See E,quation.(1.6) and the discussion pertaining'to it. In

Exercise 1.13, the within class sum of squares was 24, which was calculated

in Part (12). Thus, from Exercise 1.13, we have the total sum of squares,
36, which equals the 'between, 12, plus the within, 24.
Equation (1.10).

,
This verifies

t! rThe proof of Equation 1.10 is easy if one gets started correctly.

Write Xij-X •• ~ (Xij-Xi) +(Xi.-X ••). This simple technique of adding and

subtracting Xi.' divides the deviation (Xij-X ••) into two parts. The. proof
proceeds as follows:

• L' ,i

I' -

Exercise 1.17.

- LL[(Xij-Xi.) + (Xi.-X..)l2 ' ..
ij .' '<

- 2 - - - - - 2- LL[(Xij-Xi.> :t.2(Xij-Xi.)(Xi.-X ••)?+ (Xi.-X ••) ).
ij i

and that

Completion of Exercise 1.17 completes the proof.

Equation (1.10) is written in a fo~·which displays its meaning rather

than in a form that is most useful for computational purposes. For computa-

tion purpo~es, the following relationships are commonly used:
KN

Total - LLi(X -X )2_
ij ij ..
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K
where N • I:Ni '

i

leNi 2
Notice that the major part of arithmetic reduces to calculating I:I:Xijij

, '
I, ,':'

There are variations of this that one might

K X~. K -2example, one could use I:N iristead of I:N'iXi.
i i i

Exercise 1.18. Show that

use. For

, '
'. ',,~, L,.

A special case that is useful occurs when Ni • 2. The within sum of

squares becomes

Xl1+Xi2Since i ---- it is easy to show thati· 2

and

Therefore the within sum of squares is

which is a convenient form for computation.
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1.7.2 C~SS 'CLASSIFICATION

Reference is made to the matrix on Page 15 and to Exercise 1.8. The

total sum of squares can be divided into three parts as shown by the

following formula:

<' .'1' I~, ~~'''' ':r~I:"

I·,;'~t~~;~~
Turn to Exercise 1.·8 and find the total sum of squares and the three

I.

parts. They 'are:

The three parts add to the total which"werifies Equation (l.ll). In

Exercise 1.8, the sum of squares called remainder was computed directly

(1.11)

(1.12)

, '

~:", "

(see Part (10) of Exercise 1.8). In practice, the remainder sum of squares

is usually obtained by subtracting the row and column sum of squares from

the total.

Again, the proof of Equation (1.11) is not difficult if one makes the

right start. In this case the deviation, (Xij-X ••), is divided into three
- -parts by adding and subtracting Xi. ~~ X.j as follows:

(Xij-X ••) - (Xi.-X ••) + (X.j-X ••) + (Xij-Xi.-X.j+X ••)

Exercise 1.19. Prove Equation (1.11) by squaring both sides of Equa-

tion (1.12) and then doing the summation. The proof is mostly a matter of

showing that the sums of the terms which are products (not squares) are zero.

KN
For example, showing that EE(Xi.-X ••)(Xij-Xi.-X.j+X ••) • 0 •

ij
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CHAPTER II. RANDO}1VARIABLES AND PROBABILITY

2.1 ~~DOM VARIABLES

The ward IIrandamll has a wide variety af meanings. Its use in such

terms as "randam events, II"random variable, II ar "random sample, IIhowever,

implies a randam pracess such that the prababi~ity af an event accurring

is knawn a priari. Ta select a randam sample af elements from a papulatian,

tables af random numbers are used. There are variaus ways af using such

tables ta make a random selectian sa any given element will have a specified

prabability af being 8!electe,d•. :

The theary af praba.b:il,;f.ty:8!ampl,in.gis :faunded an the cancept af a

randam variable which is a ,variable that, by chance, might equal any ane
, I

af a defined set af values,.";::The value af. a randam :.variablean any partic-

ular accasian is determined by a randam pracess'in .such a way that the

chance (prabability) af its being equal ta anyspeclfied value in the set

is known. This is in accard with the definitian af a prabability sample

which states that every element af the populatian must have a known prab-

ability (greater than zera) afbeing selected. A primary purpose af this

chapter is ta present an elementary, minimum intraductian ar review af

prabability as backgraund .far the next chapter an expected values af a

randam variable. This leads ta a thearetical basis far sampling and far

evaluating the accuracy af estimates fram a prabability-sample survey.

In sampling theary, we usually start with an assumed papulatian af N

elements and a measurement far each element af sOme characteristic X. A

typical mathematical representatian af the N measurements ar values is

Xl"",Xi""'~ where Xi is the value af the characteristic X far the ith

thAssociated with the i element is a prabability Pi' which is the

prabability af abtaining it when ane element is selected at randam fram the



34

set of N. The Pits will be called sele~tion probabilities. If each

element has an equal chance, of selection, Pi 1- -N' The Pits need not be

equal, but we will specify that each Pi>O. When referring to the probability

of X being equal to Xi we will use P(Xi) instead of Pi'

We need to be aware of a distinction between selection probability

and inclusion probability, the latter being the probability of an element

being included in a sample. In this chapter, much of the discussion is

oriented toward selection probabilities because of its relevance to finding

expected values of estimates from samples of various kinds •.. ,

Definition 2.1. A random variable is a variable that can''equal any

value Xi' in a defined set, with a probability P(Xi).

When an element is selected at random from a population and a measure-

ment of a characteristic of it is made, the value obtained is a random

variable. As we shall see later, if a sample,of elements is selected at

random from a population, the s~le average and other quantities calculated

from the sample are random variables.

Illustration 2.1. One of the most familiar examples of a random

variable is the number of dots that happen to be on the top side of a die

when it comes to rest after a toss. This also illustrates the concept of

probability that we are interested in; namely, the relative frequency with

which a particular Qutcome will occur in reference to a defined set of

possible outcones. With a die there are six possible outcomes and we expect

each to occur with the same frequency, 1/6, assuming the die is tossed a

very large or infinite number of times. Implicit in a statement that each

side of a die has a probability of 1/6 of being the top side are SOMe

assumptions about the physical structure of the die and the "rando1lllless"

of the toss.
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The additive and multiplicative laws of probability can be stated in

several ways depending upon the context in which they are to be used. In

sampling, 'our interest is primarily in the outcome of one random selection

or of a series of random selections that yields a probability sample.

Hence, the rules or theorems for the addition or multiplication of prob-

abilities will be stated or discussed only in the context of probability..

2.2 ADDITION OF PEQBABILITIES
1). "

: , .~ I r

Assume a population
th "Xi for the i eleD:l~nt. That is, we h~ye a set of values of X, namely

,: 1, ~ l ., r. I 'd • !I' i ~ ~•~.r!j ~"I J::

Xl' ••• ,Xi':•.,~ ~- 'i.etPI'· ,•• ,Pi'••.,PN. be a set of selection probabilities,

~:~~.~'i.;~j~;~~~

ft(*~{~
~~ ;1I!~'f~~,

-f>,
sampling •

• t ~ ;;.

": ~
of N elements and a variable X which has a value

where Pi is the p~obability of selecting, the ith element when a random
" • ~ ! ~

selection 'is made.
. J.

~ ,,~.:.;--:Q'~:~!
We specify that each Pi must be greater than zero and

N'
that ~Pi - 1. When an element is selected at random, the probability that

i th thit is either the i element ~ the j element ,isPi .+ Pj. This addition

rule can be stated more generally. Let P be the sum of the selections

'\., :

probabilities for the elements in a subset of the N elements. When a random

selection is made from the whole set, P is the probability that the elements

selected is from the subset and I-P is the probability that it is not froms

the subset. With reference to the variable X, let P{Xi) represent the

probability that X equals Xi. Then P{Xi)+P{Xj) represents the probability

that X equals either Xi or Xj; and Ps{X) could b~ used to represent the

probability that X is equal to one of the values in the subset.

Before adding (or subtracting) probabilities one should determine

whether the events are mutually exclusive and whether all possible events

have been accounted for. Consider two subsets of elements, subset A and
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subset B, of a population of N elements. Suppose one element is selected

at random. What is the probability that the selected element is a member

of either subset A or subset B? Let peA) be the probability that the

selected element is from subset A; that is, peA) is the sum of the selec-

tion-probabi1ities for elements in subset A. PCB) is defined similarly.

If the two subsets are mutually exclusive, which means that no element is

in both subsets, the probability that the element selected is from either

subset A or subset B is peA) + PCB). If some elements are in both subsets,

see Figure 2.1, then event A (whiCh is the selected element being a member

.of subset A) and even.t B (which is the selected element being. a member of
.~ I' II I X. I

subset B) are not mutually exclusive events. Elements included in both
I "

subsets are counted once in peA) and once in P(B). Therefore, we must
-, •••• - 'I'

subtract P(A,B) from peA) + PCB) where P(A,B) is the sum of the probabilities
~I' (~ •• ~',. ~ \' ,•••.- •.

for the elements that belong to both subset A and subset B. Thus ,

peA or B) - peA) + PCB) - P(A,B)

I 'r'
" '

•

. .
Figure 2.1

.. ..

To summarize, the additive law of probability as used above could be

stated as follows: If A and B are subsets of a set of all possible outcomes

that could occur as a result of a random trial or selection, the probability
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that the outcome is in subset A or in subset B is equal to the probability

that the outcome is in A plus the probability that it is in B minus the

probability that it is in both A and B.

The additive law of probability extends without difficulty to three

or more subsets. Draw a figure like Figure 2.1 with three subsets so that

some points are common to all three subsets •• Observe that the additive
: J

law extends to three subsets as follows:
~i

P(A or B'or C)-P(A)+P(B)+p(e)-p(Ao,B)-p(A,e)-p(B ,e)+p(A,B ,e)

As a case for further discussion purposes, assume a population of N
, "

elements and "0,0 tdr{~~~f~ Jfor classification. A two-way classification of
'r " "

the elements could be displayed in the format of Table 2.1 •
. j;-' r

Table '2~1--A 'two-way classification of N elements
,r' ••I • " ;

X class·,.-------------------Y class
1 j ... s

Total ····· .· .----- ----------------------- -----
1

······
i ., ••• Nis'Pis :

. ·. ·
:

t Nt1,Ptl ... Ntj ,Ptj ... N P N P ·ts t ts t. t t. ··: ···. ·. ·Total N.l N .j N.s ~tP=l

The columns represent a classification of the elements in terms of criterion

Xj the rows represent a classification in terms of criterion Yj Nij is the

number of elements in X class j and Y class i; and Pij is the sum of the
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selection p~obabilities for the elements in X class j and Y class i. Any

one of the N elements can be classified in one and only one of the t times

s cells.

Suppose one element from the population of N is selected. According

to the additive law of probability we can state that

,,!.::;;1~~,ii~:
, ." .~',"..

EPij - P is the probability that the element selected is from
i .j

X class j ~ and

!Pij • P is the probability that the element selected is fromi·
j

Y class i ~ where
.~ :;1 r, r ( •

is the probability that the element selected is from
I ; ,~ :, I'''' ~' : ; ~ t j • 1 .• 1'

(belongs to both) X class j and Y class i.
I I , 1 :::, ,r ~

The probabilities p'.j ,and"~i. ,arie,c"'~rl,~,d.~lr~fi~al ,p.robab:ili~ies.
The probability that one randomly selected element is from X class

I.:

! :11'

j ~ from Y-class i is p. j' + P{. - ~ij. (The answer is not p.j + Pi. because

in p.j + Pi. there are Nij elements in X class ~ and Y class i that are

counted twice.)
_

Nij ~If the probabilities of selection are equal~'~ij N ~ p.j - N ~

"

and Pi.

Also~ the probability that the selected student lives in dormitory A

. 1600a freshman is 5000 ' that he is a
1600either a freshman or a sophomore is 5000 +

Illustration 2.2. Suppose there are 5~000 students in a university.

Assume there are 1~600 freshmen~ 1,400 sophomores, and 500 students living

in dormitory A. From a list of the 5,000 students, one student is selected

at random. Assuming each student had an equal chance of se1ection~ the

probability that the selected student is
1400sophomore is 5000 ' and that he is

1400
5000 •
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500is 5000' But, what is the probability that, the selected student is either

a freshman or lives in dormitory A? The question involves two classifica-

tions: one pertaining to the student's class and the other to where the

student lives. The inforlnation given about the 5000 students could be

arranged as-follows:

Class
Dormitory Total

Freshmen Sophomores Others

··A 500
··Other · 4500···

Total 1600 1400 2000 5000
, , :!.

From the above format, one can readily observe that the answer to the ques-

.tion depends upon how many freshmen live in dormitory A. If the problem

had stated that 200 freshmen live in dormitory A, the answer would have
1600 500 200

been 5000 + 5000 - 5000 •

Statements about probability need to be made and interpreted with

great care. For example, it is not correct to say that a student has a

probability of 0.1 of living in dormitory A simply because 500 students out

of 5000 live in A. Unless students are assigned to dormitories by a random

process wi th known probabilities there is no basis for stating a studen t 's

probability of living in (being assigned to) dormitory A. We are consider-

ing the outcome of a random selection.

Exercise 2.1. Suppose one has the following information about a

population of 1000 farms:
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600 produce corn

500 produce soybeans

300 produce wheat

100 produce wheat and corn

200 have one or more cows

all farms that have cows also produce corn ll'

200 farms do not produce any ~rops

One farm is selected at random with equal probability from the list

of 1000. What is the probability that the'selected farm,

(a) produces corn? Answer: 0.6

(b) does not:produ~e wheat?

(c) produces corn but no wheat? Answer: 0.5
, ,

(d) ; , both?produces corn or wheat but not

(e) has no cows? Answer: 0.8

(f) produces corn or soybeans?

(g) produces corn and has no cows? Answer: 0.4

(h) produces either corn, cows, or both?

(i) does not produce corn or wheat?

. _ l

One of the above questions cannot be answered.

Exercise 2.2. Assume a population of 10 elements and selection

probabilities as follows:

Element Xi Pi Element X. Pi1----
1 2 .05 6 II .15

2 7 .10 7 2 .20

3 12 .08 8 8 .05

4 0 .02 9 6 .05

5 8 .20 10 3 .10
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One element is selected at random with probability Pi.

Find:

(a} P(X-2),. the probability that X - 2.

(b) P(X>lO), the probability that X is greater than 10.

(c) P(X;52), the probability that X is equal to or less than 2.

(d) P(3<X>lO), the probability that X is greater than 3 and less
than 10

(e) P(X;53 ,o~ X~lO), the probability that X is either equal to or less
than 3 or is equal to or greater than 10.

Note: The answer to (d) and the answer to (e) should add to 1.
~~ ~ • I :' ~ ~ ~!. i r] i~ .. ,I

SO far, we have been discussing the probability of an event occurring as

a result of a single randOm selection. When more than one random selection
, : I "

occurs simultaneously or in succession the multiplicat.1ve law of prob-
A I·~.j~::::': ~ It gd:' 1 " ' : ~~:!~:'

ab.11.1tyis useful.

, '.
~i ,,:;' ~ , 'Ji'~

'1A '"

l,

r '.
2.3 MULTIPLICATION OF PROBABILITIES

Assume a population of N elements and selection probabilities
N

Pl, ••• ,Pi, ••• ,PN• Each Pi is greater than zero and EPi - 1. Suppose
i

two elements are selected but before the second selection .ismade the

first element selected is returned to the population. In this case the

outcome of the first selection does not change tpe selection probabilities

for the second selection. The two selections (events) are independent.

The probability of selecting the ith element first and the jth element

second is, PiPj, the product of the selection ~robabilities Pi and Pj.

If a selected element .isnot returned to the population before the next
Iselection is made, the selection probabilities for the next selection are

__ changed. The selections are dependent.
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The multiplicative law of probability, for two independent events

A and B, states that the joint probability of A and B happening in the

order A,B is equal to the probability that A happens times the prob-

ability that B happens. In equation form, P(AB) - P(A)P(B). For the

order B,A, P(BA) - P(B)P(A) and we note that P(AB) - P(BA). Remember,

independence me~s that the probability of B happening is not "affected

to any number of indepen'dent 'eve~ts; Thus, P(ABC) ••P(A)P(B)P(C).
by the occurrence of A and vice versa. The multiplicative law extends

For two dependent events A and B, the multiplicative law states that
1 , •• : ~ ~". i,

the joint probability of A and B happening in the order A,B is equal to
~:; ;, .1;) I I ~.~ -l 1:..J l.t ~ ;:1 l!:,l',' ( 'I,~ 11: , ..•. :t i~~: )'1

the probability of A happening ti.wis the probability that B happens under
'" ~ • II j "$If! r"" ·'J~1 ~;I ·.irf,~" ',·'1' :'"

the condition that A has already happened. In equation form P(AB) ••
~ 4:' 'll ~ r!!( ~':~'I II ::~ ).::f...·~tjl."I:fr t!f(!~ 1',;' 1111!~ ': '" I " ~ ,,"'l")C

P(A)P(BIA); or for the order i,A we have P(BA) ••P(B)P(AIB). The vertical

bar can usually be translated as "given" or "given that." The notation on

the left of the bar refers to the event under consideration and the nota-

tion on the right to a condition under which the event can take place.

p(BIA) is called conditional probability and could be read "the" prob-

ability of B, given that A has already happened," or simply "the prob-

ability of B given A." When the events are in~'!pendent,p(BIA) - P(B);
that is, the conditional probability of B occurrin~ is the same as the

unconditional probability of B. Extending the multiplication rule to a

series of three events A,B,C occurring in that order, we have P(ABC) -
P(A)P(BIA)P(cIAB) where p(CIAB) is the probability of C occurrinsgiven

that A and B have already occurred.

2.4 SAMPLING WITH REPLACEMENT
When a sample is drawn and each selected element is returned to the

population before the next selection is made, the method of sampling is
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called "sampling with replacement." In this case, the outcome of one

selection does not change the selection probabilities for another

selection.

Suppose a sample of n elements is selected with replacement. Let the

values of X in the sample be xl,x2"",xn where Xl is the value of X

obtained on the first selection, x2 the value obtained on the second

selection, etc •. ~otice that Xl is a random variable that could be equal

to any value in.the population set o~.values Xl'X2""'~' and the prob-

~ ability that Xl ,equals Xi is Pi' The ,same statement applies to x2' etc.

Since the selections are;,independent,,:~tl1eprobability of getting a sample
-.• I,

of n in a particular order is the pr~4uct of the selection probabilities

namely, P(xI)1~(~~);~:~.~~n~t1:~~~:"f~(xI~~~ ~~~,J~i,~~~~~~heelement, ~e~ected
on ,the first draw, p(x2) is th~ Pi for the.el~ment ,selected on the second

'" . ~ A, .I .} • ..:;: __Jt .. j, . '~. ~'l ,,' I ;~

draw, etc.

Illustration 2.3. As an illustra~ion, consider a sample of two,~
elements selected with equal probability and with replacement from a popu-

lation of four elements. Suppose the values of some characteristic X for

the four elements are Xl' X2, X3, and X4• There are 16 possibilities:

Xl 'Xl X2,Xl X3 'Xl X4~Xr

Xl ,X2 Xl ,X2 X3'X2 X4,X2

XI'X3 X2,X3 X3'X3 X4'X3

XI'X4 X2,X4 X3'X4 X4'X4
1 1In this illustration p(~) is always equal to 4and p(x2) is always 4.

Hence each of the 16 possibilities has a probability of (~) (t) - i6 •
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Each of the 16 possibilities is a different permutation that could

be regarded as a separate sample. However, in practice ~ we are not

concerned about which element was selected first or second) it is more

logical to disregard the order of selection. Hence, as possible samples

and the probability of each occurring, we have:

Sample Probability Sample Probability

Xl,Xl 1/16 x2,X3 1/8

JS.,X2
1/8 x2,X4 1/8 :: . ~,~ I' '

i , I . I' ; ! •~ ,'I'Xl,X3 1/8 X3,X3 1/16 ' . I J' ••

JS.,X4 1/8 x3,X4
i 1/8 J ,=- : ! t· • :~I ldi,r .. J ~~,r '

X2,Xi 1/16 X4 ',Xl;" 1/16 l _ ~ :. • l"I. .,

- "I'
Note that the sum of the probabilities is 1. 'That must always be the

I jo',l

case if all possible samples have been listed with the correct prob-
r~r ;; :J ,!"

abilities •
, , '

Also note ,that, since the probability (relative frequency
• " ; I

of occurrence) of each sample is known, the average for each 'sample is

a random variable. In other words, there were 10 possible samples, and

anyone of 10 possible sample averages could have occurred with the

probability indicated. ,This-is a"simple illustration of the fact tbat

the sample average satisfies the definition of a random variable. As

the theory of sampling unfolds, we will be ex,amining the properties of

a sample average that exist as a result of its being a random variable.

Exercise 2.3. With reference to Illustration 2.3, suppose the

1 1 ,31
probabilities of selection were P1 • 4' P2 • 8' P3 • 8' and P4 • 4·
Find the probability of each of the ten samples. Rememberthe sampling

is with replacement. Check your results by adding the 10 probabilities.
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For the sample composed of elementsThe sum should be 1. Partial answer:
. I 1 1 I 1

2 and 4 the probability is (8) (4') + (1;) (8)
I

I
a- 16.

2.5 SAMP~ING WITHOUT REPLACEMENT

When a selected element is not returned to the population before the

next selection is made, the sampling method is called sampling without

replacement. In this case, the selection probabilities change from one
!

As above, assume a population of N elements with values of some

dr~ to the nextj that is, the selections (events) are dependent.

characteristic X equal to Xl'X2' ••• '~.
, '

for the first

Let the selection probabilities 1

s~,lection be PI ',••• ,Pi'.,••PN where each P1>0 and I:Pi •••1.•..,

el,ements are,selected wi~~out replacement. Let Xl' x2' and.Suppose three

t·

x3 be the values'lof X obtained on the f~rst, second: and ;hird random

draws, respecti~elY. What is the prob,a~.~litythat Xl •••XS' x2 •••X6' and"

x3 • X7? . Let P~~~~X6,X7) represent t~~ :probability,whic~ is the prob-
ability of selecting elements S, 6, and 7 in that order.

According to the multiplicative probability law for dependent events,

,...

P~X5,X6,X7) - P(XS)P(X6JXS)P(X7IXs,X6) .
It is clear that P(~S) • PS. For the second draw the selection prob-

abili~ies (after element S is eliminated) must be adjusted so they add
i '

to 1. Hence, for the second draw the selection probabilities are

PN
, ..• , l-P •

N

P6D--l-P •
S

Sindlarly,

Therefore, (2.1)



46

Ps P7.
Observe that P(X6,XS,X7) - (P6)(1-P )(l-P _p). Hence, P(XS,X6,X7) ~

6 6 S
P(X6,X5,X7) unless Ps - P6• In general, each permutation of n elements

has a different probability of occurrence unless the Pi's are all equal.

To obtain the exact probability of selecting a sample composed of e1e-

~nts 5, 6, and 7, one would need to compute the probability for each of

the six possible permutations and get the sum of the six probabilities.

Incidentally, in the actual process·of selection, it is not neces-

sary to compute a new set of selection probabilities after each selection

is made. Make each selection in the same way that the first selection
l 'I

was made. If an element is selected which has already been drawn, ignore

the random number 'and continue the same process of random selection

until a new element is drawn.

As indicated by the very brief discussion in this section, the

theory of sampling without replacement and with unequal probability of

selection can be very complex. However, books on sampling present ways

of circumventing the complex problems. In fact, it is practical and

advantageous in many cases to use unequal probability of selection in

sampling. The' probability theory for sampling with equal probability

of selection and without replacement is relatively simple and will be

discussed in more detail.

Exercise 2.4. For a population of 4 elements there are six possible

List the six pos.sib1e samples' and find the prob-

samples of two when sampling without replacement.
1- -4·

1- -8'

ability of getting each sample. Should the probabilities for the six

samples add to 11 Check your results.
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Exercise 2.5. Suppose two elements are selected with replacement

and with equal probability from a population of 100 elements. Find the

probability: (a),that element number 10 is not selected, (b) that ele-

ment number 10 is selected only once, and (c) that element number 10 is
. ~

selected twice? As a check, the three probabilities should add to 1.

Why? Find the probability of selecting the combination of elements 10

and 20.
t,

Exercise 2.6. Refer to Exercise 2.5 and change the spec.1f1cation

0: "with replacement" to "without replacement." Answer the same questions.

Why is the probability of getting the combination of elements 10 and 20
'Ii:: I ,1< , 1:! 1,,1 ' ..

greater than it was in Exercise 2.5?
. : ::' j

2.6 SIMPLE RANDOM SAMPLES
I : j~: J :. t, ",: "II' ,

In practice, nearly all samples are selected without replacement.
I, ; ~. "oil

Selection of a random sample of n elements ,with equal probability and

without replacement, from a population of N elements is called simple

random sampling (srs). One element must be selected at a time, that is,

n separate random selections are required.

First, t.he probability of getting a particular combination o(_n ...

elements will be discussed. Refer t.oEquation (2.1) and the dtscussion
1preceding it. The Pi's are all equal to N for simple random sampling.

IIITherefore, Equation (2.1) becomes P(X5,X6,X7) - (N)(N-l)(N-2)' All per-
mutations of the three elements 5, 6, and 7 have the same probability of

occurrence. There are 3! - 6 possible permutat ion.s• Therefore, the

probability that the sample is composed of the elements 5, 6, and 7 is
(1) (2) (3)

N(N-l)(N-2) • Any other combination of three elements has the same

probability of occurrence.
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In general, all possible combinations of n elements have the same

chance of selection and any particular combination of n has the following

probability of being selected:

(1)(2)(3) ••• (n) _ nl(N-n)I
N(N-I)(N-2) ••• (N-n+I) NI (2.2)

NtAccording to a theorem on number of combinations, there are nl(N-n)I

possible combinatioDs (samples) of n elements. If each combination of

n elements has the same chance of being the sample selected, the probability.

of selecting a specified combination must be the reciprocal of the number

of combinations. This checks with Equation (2.2).

An important feature of srs that will be needed in the chapter on
th .expected values is the fact ·that the j element of the population is as

I thlikely to be selected at the i random draw as any other. A general
thexpression for the probability that the j element of the population is

thselected at the i drawing is

I- -N <.2.3)

Let us check Equation 2.3 for i - 3. The equation becomes

I- -N
thThe probability that the j element of the population is selected at the

third draw is equal to the probability that it was not selected at either

the first or second draw times the conditional probability of being

selected at the third draw, given that it was not selected at the first

or second draw. (Remembe~the sampling is without replacement). Notice
~l ~that ~ ts the probability that the j element is not selected at the

N-2first draw and N-I is the conditional probability that it was not selected

at the second draw. Therefore, eN;I) (~:i)is the probability that the j th
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element has not been selected prior to the third draw. When the third

This verifies Equation (2.3) for i • 3.

draw is made, the conditional probability of
1is N-2. ,Hence the probab'ility of selecting

N-l N-2 1 1draw is (T)(N-l)(N-2) • N •

thselecting the j element
ththe j element at the third

jth element in a population has a probability
that the i drawing.

To summarize, the general result for any size of sample is that the
1equal to N of being selected

It means that xi (the value of X obtained at the ith

1draw) is a random variable that has a proba~ility of N of being equal to

any value of the set Xl' ••• '~'
What probability does the jth element have of being included in 'a

1sample of n? We have just shown that it has a probability of N of being

selected at the ith drawing. Therefore, any given element of the popula-
1tion has n chances, each equal to N t of being included in a sample. The·

element can be selected at the first draw t 2!:. the second draw, ••• , .5!!.the

nth draw and it cannot be selected twice because the sampling is without

replacement. 1Therefore the probabilities, N for each of the n draws, can
nbe added which gives N as the probability of any given element being

included in the sample.

Illustration 2.4. Suppose one has a list of 1,000 farms which includes

some farms that are out-of-scope (not eligible) for a survey. There is no

way of knowing in advance whether a farm on the list is out-of-scope. A

simple random sample of 200. farms is selected from the list. All 200 farms

are visited but only the ones found to be in scop~ are included in the

sample. What probability does an in-scope farm have of being in the sam-

ple? 1Every farm on the list of 1000 farms has a probability equal to 5'
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of being in the sample of 200. All in-scope farms in the sample of 200

are included in the final sample. 1Therefore, the answer is 5.
Exercise 2.7. From the following set of 12 values of X a srs of

three elements is to be selected: 2, 10, 5,8, 1, 15, 7, 8, 13, 4, 6,

and 2. Find P(x~l2) and P(J<x<12). Remember that the total possible

number ~f samples of 3 can readily be obtained by formula. Since every

possible sample of three is equally likely, you can determine which sam-

ples will have an x<3 or an ~12 without listing all of the numerous

possible samples. Answer: - 3 - 9 - 208P(x~12) - 220 ; P(x~3) - 220 ; P(3<x<12) - 220·
2.7 SOME EXAMPLES OF RESTRICTED RANOOM SAMPLING

There are many methods ,other,than srs that will g1ve every element

an equal chance of being in the sample, but some combinations of n ele-

ments do not have a chance of being the sample selected unless srs is

used. thFor example, one might take every k element begi~ning from a

random starting point between I and k. This is called systematic sam-

pIing. For a five percent sample k would be 20. The first element for

the sample would be a random number between 1 and 20. If it is 12, then

elements 12,32,52, etc., compose the sample. Every element has an
1equal chance, 20 ' of being in the sample, but there are only 20 com-

binations of elements that have a chance of being the sample selected.

Simple random sampling could hav~ given the same sample but it is the

method £f. sampling that characterizes a sample and determines how error

due to sampling is to be estimated. One may think,of sample design as a

matter of choosing a method of sampling; that is, choosing restrictions

to place on the process of selecting a sample so the combinations which
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have a chance of being the sample selected are generally ''better''than

many of the combinations that could occur with simple random sampling.

At the same time, important properties that exist for simple random sam-

pIes need to be retained. The key properties of srs will be developed in

the next two chapters.

Another common method of samplin~ involves classification of all

elements of a population into groups called strata. A sample is selected

from each stratum. Suppose Ni elements of the population are in the ith

stratum and a simple random sample of,ni elements is selected from it.

This is called stratified random sampling. It is clear' that every ele-

ment in the ith ~t:r'~tum~as a probability ,equal to :i of being in the
"ni i

sample. If the sampling fraction, N ' is the same f~r all
I, ,', ; ," <, ':' ·i, "

every element of the population has-an--equal chance, namely
'I 'I

being in the sample. Again every element of

strata,
ni
N ' of
i

the population has an equal
" , t

chance of selection and of being in the sample selected, but some combi-

nations that could occur when the method is srs cannot occur when

stratified random sampling is used.

So far, our discussion has referred to the selection of individual

elements, which are the units that data pertain to. For sampling purposes

a population must be divided into parts which are called sampling units.

A sample of sampling units is then selected. Sampling units and elements

could be identical. But very often, it is either not possible or not

practical to use individual elements as sampling units. For example,

suppose a sample of.households is needed. A list of households does not

exist but a list of blocks covering the area to be surveyed might be avail-

able. In this case, a sample of blocks mi~ht be selected and all households
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within the selected blocks included in the sample. The blocks are the

sampling units and the elements are households. Every element of the

population should belong to one and only one sampling unit so the list of

sampling units will account for all elements of the population without

duplication or omission. Then, the probability of selecting any given

element is the same as the probability of selecting the sampling unit

that it belongs to.

I1lust~ati?n 2.5_. Suppos.e a population is composed of 1800 dwelling

units located within 150 well-defined blocks. There are several possible
,

sampling plans. A srs of 25 blocks could be selected and every dwelling

unit in the selected blocks could be included in the sample. In thi~
1case, the sampling fraction is '6 and every dwelling unit has a probability

1of '6 of being in the sample. Is this a srs of dwellin~ units? No, but

one could describe the sample as a random sample (or a probability sample)

of dwelling -units and state that every dwelling unit had an equal chance

of being in the sample. That is, the term "simple random sample" would

apply to blocks, not dwelling units. As an alternative sampling plan, if

there were twelve dwelling units in each of the 150 blocks, a srs of two

dwelling units could be selected from each block. This scheme, which is an

example of stratified random sampling, would also give every dwelling unit
1a probability equal to '6 of being in the sample.

Illustration 2.6. Suppose that a sample is desired of 100 adults

living in a specified area. A list of adults does not exist, but a list

of 4,000 dwellin~ units in the area is available. The proposed sampling

plan is to select a srs of 100 dwelling units from the list. Then, the

field staff is to visit the sample dwellings and list all adults living
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in each. Suppose there are 220 adults living in the 100 dwelling units.

A simple random sample of 100 adults is selected from the list of 220.

Consider .the probability that an adult in the population has of being in

the sample of 100 adults.

Parenthetically, we should recognize that the discussion which

follows overlooks important practical problems of definition such as the

definition of a dwelling unit, the definition of an adult, and the.defini-

~ clear, that the list of dwelling units is complete, that no dwelling is

tion of living in a dwelling unit. However, assume the definitions are

on the list more than once, and that no ambiguity exists about whether I

an adult lives or does not live in a particular dwelling unit. Incom-.plete definitions often lead to inexact probabilities or ambiguity, that

gives difficulty in analyzing or interpreting results. The many practical

problems should be discussed in an applied course on sampling.

It is clear that the probability of a dwelling unit being in the
1sample is 40. Therefore, every person on the list of 220 had a chance

1of 40 of being on the list because, under the specifications, a person

lives in one and only one dwelling unit, and an adult's chance of being

on the list is the same as that of the dwelling unit he lives in.

The second phase of sampling involves selecting a simple random

sample of 100 adults from the list of 220. The conditional probability
100 5of an adult being in the sample of 100 is 220 - 11. That is, given the

5fact that an adult is on the list of 220, he now has a chance of 11 of

being in the sample of 100.

Keep in mind that the probability of an event happening is its rela-

tive frequency in repeated trials. If another sample were selected



54

following the above specifications, each dwelling unit in the population
1would again have a chance of 40 of being in sample; but, the number of

adults listed is not likely to be 220 so the conditional probability at

the second phase depends upon the number of dwellings units in the sample

blocks. Does every adult have the same chance of being in the sample?

Examine the case carefully. An initial impression could be misleading.

Every adult in the population has an equal chance of being listed in the

first phase and every adult listed has an equal chance of being selected

at the second phase. But, in terms of repetition of the whole sampling .~

plan each person does not have exactly the same chance of being in the

sample of 100. The following exercise will help clarify the situation

and is a good exercise in probability.

Exercise 2.8. Assume a population of 5 d.u.'s (dwelling units) with

the following numbers of adults:

Dwelling Uni t No. of Adults

1 2

2 4
3 1
4 2

5 3

A srs of two d.u.'s is selected. A srs of 2 adults is then selected from
a list of all adults in the two d.u.'s. Find the probability that a speci-

fied adult in d.u. No.1 has of being in the sample. Answer: 0.19. Find

the probabIlity that an adult in d.u. No. 2 has of beinR in the sample.

Does the probability of an adult being in the sample appear to be related

to the number of adults in his d.u.? In what way?
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An alternative is to take a constant fraction of the adults listed

instead of a constant number. For example, the specification might have
1been to select a random sample of 2of the adults listed in the first

phase. In this case, under repeated application of the sampling speci-

fications, the probability at the second phase does not depend on the

outcome of the first phase and each adult in the population has an equal
1 1 . 1chance, (40) (2) - 80 ' of being selected in the sample. Notice that

under this plan the number of adults in a sample will vary from sample

For some surveys, interviewing more than one adult in a dwelling unit

is inadvisable. Again, suppose the first phase 0'£ sampling is to select

a srs of 100 dwelling units. For the second phase, consider the following:
.1!

When an interviewer completes the listing of adults in a sample dwelling,

he is to select one adult, from the list of those living in the dwelling,

at random in accordance with a specified set of instructions. He then

interviews ··theselected adult if available; otherwise, he returns at a

time when the selected adult is available. What probability does an adult

living in the area have of being in the sample? According to the multi-

plication theorem, the answer is P'(D)P(AID) where P#(D) is the probability

of the dwelling unit, in which the adult lives, being in the sample and

p(AID) is the probability of the adult being selected given that his

specifically, P#(D) = ~o and p(AID)
thin the i dwe~ling.where ki is the number of adults

1 1chance, (40)(k)' of being in a sample
i

number of adults in his dwelling unit.

dwelling is in the sample. More 1
-k'

i
Thus, an adult's

is inversely proportional to the

Exercise 2.9. Suppose there are five dwellin~ units and 12 persons

living in the five dwelling units as follows:
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Dwelling Uni t Individuals

1 1, 2

2 3, 4, 5, 6

3 7, 8

4 9

5 10, 11, 12

1. A sample of two dwelling units is selected with equal probability

and without replacement. All individuals in the~elected dwelling units

are in the sample. What probability does individual number 4 have of being

in the sample? Individual number 9?
, 1.1111112. Suppose from a list .of the 'twelve individuals that one individual

is selected with equal probability. From the selected individual two

items of information are obtained: his age and the value of the dwelling

in which he lives. Let Xl' X2, ••'~,X12 represent the ages of the 12 indi-

viduals and let Yl ,••• 'Y5 represent the values of the five dwelling·:units.
th 1Clearly, the probability of selecting the i individual is 12 and there-

1fore P(Xi) • 12. Find the five probabilities P(Yl), ••• ,P(Y5). Do you
2agree that P(Y3) • l2? As a check, ~P(Yj) should equal one.

3. Suppose a sample of two individuals is selected with equal prob-

ability and without replacement. Let Ylj be the value of Yj obtained at

the first draw and Y2j be the value of Yj obtained at the second draw.

Does P(Ylj) • P(Y2j)? That is, is the probability of gettin~ Yj on the

second draw the same as it was on the first? If the answer is not evident,

refer to Section 2.5.

Exercis~ 2.10. A small sample of third-grade students enrolled in

public schools in a State is desired. The following plan is presented only
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as an exercise and without consideration of whether it is a good one: A

sample of 10 third-grade classes i~ to be selected. All students in the

10 classes will be included in the sample.

Step 1. Select a srs of 10 school districts.

Step 2. Within each of the 10 school districts, prepare a list

of public schools having a third grade. Then select one

school at random from the list.

Step 3. For each of the"10 schools resulting from Step 2, list

the third-grade classes and select one class at random •
(If there is only 'one'"f'thi'rd-igrad'e''class in the school,

it is in the sample). This will give a sample of 10 classes.
, , • "" 1 '",Describe third-grade classes i~',the 'population which have relatively

small chances of being selected. D~fine needed, notation and write a
" ) l" ,l ~l j

mathematical expression representing the"proba~ility of a third-grade
I' ' l I ': ,II .': I I ". I' \, 'l l.~. ,I:' :. I '~t r

class beins; in the sample.

2.8 TWO-STAGE SA}~LING

For various reasons sampling plans often employ two or more stages

of sampling. For example, a sample of counties .might be selected, then

within each sample county a sample of farms might be selected.

Units used at the first stage of sampling are usually called primary

sampling units or psu's. The sampling units at the second stage of sam-

pIing could be called secondary sanplinr, units. However, since there has

been frequent reference earlier in this chapter.to "elements of a popula-

tion,lI the sar.mling units at the second stage will be called elements.

In the simple case of two-stage samplin~, each element of the popu-

lation is associated with one and only one primary sampling unit. Let i
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be the index for psu's and let j be the index for elements within a psu.
thThus Xij represents the va~ue of some characteristic X for the j element

th.in the i psu. Also, let

M - the total number of psu's,

m'· the number of psu's selected for a sample,
thN - the total number of elements in the i psu, and

i
thni - th~ number of elements in the sample from the i psu.

Then,

M
LNi - N, the total number of elements in the population, and
i

m
Ln1 - n, the total number of elements in the sample.,
1

Now consider the probability of an element being selected by a two

step process: (1) Select one psu, and (2) select one element!·within the

selected psu. Let,
thP - the probability of selecting the i psu,

i
ththe conditional ,probability of selecting the j

th thelement in the i psu given that the i psu has

been selected, and

already

Then,

Pij - the
the

thoverall probability of selecting the j element in
thi psu.

If the product of the two probabilities, Pi and Pjli' is constant for

every element, then every element of the population has an equal chance of
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being selected. In other words, given a set of selection probabilities
1Pl,·,.,PM for the psu's, one could specify that Pij - N and compute Pjli '

1where 'Pjli - NP
i

' so every element of the population will have an equal
,,'chance of selection.,

Exercise 2.11. Refer to Table 2.1. An element is to be selected by

a three-step process as follows: (1) Select one of the Y classes (a row), N
with probability Ni., (2) within the selected row select an X class (a

I N

column) with probability Nij , (3) within the selected cell select an
£ i.

element with equal probability. Does each element in the population of N ,
\ 'I: " :

elements have an equal probabili,ty of being drawn? What is the probability?
':. 'IThe probability of an element being included in a two-stage sample

! ~: r l.t •.~j \1 ,. I

is given by
(2.4)

where
thp" - the probability that the i psu is in the sample

i

of psu's, and

Pili • the conditional probability which the j element has
thof being in the sample, given that the i psu has

been selected.

The inclusion probability Pij will be discussed very briefly for three

important cases:

ability and without replacement. The probability, Pi '

being in the sample is f1 -: where fl is the sampling fraction for the

(1) Suppose a random sample of m psu's is selected with equal prob-
thof the i psu

first-stage units. In the second stage of sampling assume that, within

each of the m psu's, a constant proportion, f2, of the elements is selected.
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thThat is, in the i psu in the sample, a simple random sample of ni ele-

ments out of Ni is selected, the condition being that ni - f2Ni• Hence,
th ththe j element in the i psu being inthe

the

conditional probability of
nisample is P ~I - -. f2 •

j i ~i

- flf2 which shows that an

SUbstitutin~ in Equation 2.4, we have

element's probability of being in the

sample is equal to the product of the sampling fractions at the two stages.

In this case Pi
j

is constant and is the overall sampling fraction.

UnleSs Ni is the same for all psu's, the size of the sample,

ni - f2Ni ' varies from psu to psu. Also, since the psu's are selected
m In

at random the total'size of the sample, n - En - f2 ENi, is not constant
. i i i

Iwith regard to repetition of the sampling plan. In practice variation in
, ,

the size, ni, of the sample from psu to psu might be very undesirable. If

appropriate information is available, it is possible to select psu's with

probabilities that will equalize the sample sizes ni and also keep Pij

constant.

(2)
N
iSuppose one psu is selected with probability Pi - ~ • This

k- -N

is commonly known as sarnplinp,with pps (probability proportional to size).

Within the selected psu, assume that a simple random sample of k elements

is selected. (If any Ni are less than k, consolidations could be made so

all psu's have an Ni greater than k). Then,
N

P'" i p'" k d P~
i - ~, jli - N

i
' an ij

which means that every element of the population hgs an equal probability,
kN ' of being included in a sample of k elements.

Extension of this sampling scheme to a sample of m psu's could

encounter the complications indicated in Section 2.5. However, it was
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Ista~d that means exist for circumventing those complications. Sampling

bOO~l/ discuss this mat~er quite fully so we will not include it in this

monog~aph~ The point is that one can select m psu's without replacement
\ Ni thin such a way that m ~ is the probability of including the i psu in

Nithe sample. That is, Pi - 1U. N. -If a random sample of k elements is

se1ect~d with equal probability from each of the selected psu's,

and

mk n
- -a-N N

~us, if the ,Ni are known,l~xact1y for all M psu's'in the population,

and if a list of .e1ements in each pS.u ,is available, it is possible to

select ,a two-stage sample of n e1eme
t
nts so that k elements for the sample

come from each of m psu' a and every element of the population has an equal
.. - j

chance of being 'in the sample. In practice, however, one usually finds

one of two situations: (a) there is no information on the number of e1e-

ments in the psu's, or (b) the information that does exist is out-of-date.

Nevertheless, out-of-date information on number of elements in the psu's

can be very useful.' It is also possible that a measure of size might

exist which will serve, more efficiently, the purposes of sampling.

Yi be the value
M

where Y - l:Yi •
Y i
i thPi - my-is the probability that the i pau has of being in the sample.

A sample of m psu's is selected in such a way that

is used as a measure of size.
Y
i

Y

c- (3) Suppose that characteristic Y
thof Y for the i psu in the population and let P -i

Let

1/ For example, Hansen, Hurwitz, and !1adow. Sample Survey Methods and
Theory. Volume I, Chapter 8. John Wiley and Sons. 1953.



With regard to the second stage of sampling. let f21 be the samplin~
thfraction for selecting a s~mple random sample within the i psu in the

sample. That is. Pili - f2i• Then.
Yi

P1j .. (m y-> (f21> (2.5)

In setting sampling specifications one would decide on a fixed valu'

for Pij' In this context Pij is the overall sampling fraction or propor;
tion of the population that is to be included in'the sample. For example.

l
if one wanted a 5 percent sample. p!j would be .05. Or. if one knew there

~.were approximately 50.000 elements in the population and wanted a sample;:

of about 2.000. he would set 'P1j - .04. Hence. we will let f be the over-

all sampling fraction and set p!j equal to f•. Decisions are also made on .

the measure of size to be used and on the number'. m. of psu's to be selected.

In Equation 2.5. this leaves f2i to be determined. Thus. ~2i is computeCt ':

as follows for each psu in the sample:

fY
f ---2i mYi

Use of the samplin~ fractions f2i at the second stage of sampling will give

every element of the population a probability equal to f of bein~ in the

sample. A sample wherein every element of the population has an equal

chance of inclusion is often called a self-weighted sample.

. "
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;if~\~t~:,:,

)

'.,

SiVelj in the theory of sromplinr,;in fact, it is the foundation for

sampling theory. Interpretations of the'accuracy of estimates from
l
Iproba~ility samples depend heavily on the theory of expected values.
I

~e definition of a random variable was discussed in the previous

chapter. It is a variable that can take (be equal to) anyone of a

defined set of values wi th known probability. Let Xi be the value of X
for the ith element in a set of N elements and let Pi be the probability
that th ' " of bein? selected by some chance operationthe i element has so

that Pi is known a priori. tfuat is the expected value of X?

_D_e_f~n_i_t_i_~~~!.The expected value of a random v~riable X is

N N
r PiXi where r Pi-I. The mathematical notation for the expected value

i=l i=l
N

of X is E(X). Hence, by definition, E(X) = E PiXii=l

Observe that EPiXi is a weighted avera~e of the values of X, the

weights being the probabilities of selection. "Expected value" is a

substitute expression for "avera~e value.1I In other words, E means "the

average value of" or "find the average value of" whatever follows E. For
2 2example, E(X ),read "the expected value of X ,"refers to the averar.e value

of the squaresof the values that X can equal. That is, by definition,

If all of the N elements have an equal chance of bein~ selected, all
1values of Pi must equal N because of the requirement that rp i = 1. In



Illustration 3.1. Assume 12 elements having values of X as follows:

this case, E(X) -
N 1
E N Xi

i-I

for all N elements.

EX
i-N - X , which is the simple average of X

64

Xl - 3 X - 5 X • 105 9

X2 • 9 X - 3 XIO - 36

X • 3 X7 - 4 XII - S3

X4 -,5 Xs - 3 Xl2 - 4

F hi set,E(X) - 3+9+•••+4 5 umi h 1 h hor t s 12 -, ass ng eac e ement as t e same

chance of selection. Or, by counting ,thenumber of times that each

unique value of X occurs, a frequen~y distribution of X can be obtained
, ,

as follows:

~ ~

3 5

4 2

5 2

8 1

9 1

10 1

where X
j

is a unique value of X and N
j

is the number of times X
j

occurs.

EX
i

- -- - X •N

Suppose one of the X
j

values is selected at random with a probability equal

•
N", • N",to Pj whe re Pj --L- .....LEN

j
N 'What is the expected value of X

j
? By



N
de~inition E(Xj) - EPjXj - Ej! Xj
that in this illustration E(Xj) - 5.
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The student may verify

Note that the selection specifica-

are very similar. The probability distribution with reference to Xj would

be: l
I"~'!;'~~:~t

,1 '.: '~~2~'

tions were equivalent to selecting one of the 12 elements at random with

equal probability.

Incidentally, a frequency distribution and a ~robability distribution

~ i
3 5/12

,I 4 .. 2/121, ", ,~1

5 2/12

~ 1/12

9 1/12 ,'..1 ,

10 1/12

f'I't"

,.'

, ~i i')'1 "!:'I :..•, . ':l

1The 12 values, Pi - N ' for the 12 elements are also a probability distri-

bution. This illustration shows two ways of treating the set of 12

elements.

When finding expected values be sure that you understand the defini-

tion of the set of values that the random variable might equal and the

probabilities involved.

Definition 3.2. \olhenX is a random variable, by definition the

expected value of a function of X is

N
E[f(X)] - E Pi[f(Xi)]

i-l

Some examples of simple functions of X are: f(X) - aX, f(X) - X2,

f(X) - a + bX + cX2, and f(X) - (X-X)2. For each value, Xi ' in a

defined set there is a corresponding value of f(Xi).
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Illustr~~io~_3.2. Suppose f(X) = 2X+3. With reference to the set

of 12 elements discussed above, there are 12 values of f(Xi) as follows:

f(X1) - (2)(3) + 3 = 9

f(X2) = (2)(9) + 3 = 21

f(X12) = 2(4) + 3 = 11
1Assuming Pi = - the expected value of f (X) = 2X+3 would be
N

,.

;
f

i',.

E(2X+3) (3.1)

In algebraic terms, for f(X) - aX+b, we have
~ r • ,

N
E(aX+b) - L Pi(aXi+b) = LPi(aXi~'+ ~Pib

i-I
By definition LPi(aXi) - E(aX), and LPib - E(b). Therefore,

E(aX+b) - E(aX) + E(b) (3.2)

Since b is constant and rpi,- 1, LPib - b, which leads to the first

important theorem in expected values.

Theorem 3.1. The expected value of a constant is equal to the

constant: E(a) - a.

another i1'!lPortanttheorem:

Theorem 3.2. The expected value of a constant times a variable equals

the constant times the expected value of the variable: E(aX) - aE(X).

Applying these two theorems to Equation (3.2) we have E(aX+b) -

aE(X) + b. Therefore, with reference to Illustration 3.2, E(2X+3) =

2E(X) + 3 - 2(5) + 3 = 13, which is the same as the result found in

Equation (3.1).
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Exercise 3.1. Suppose a random variable X can take any of the

following four values wi~h the.probabilities indicated:

Xl = 2 X ••5 X = 4 X •••62 3 4
p = 2/6 P = 2/6 P •••1/6 P4 = 1/61 2 3·

(a) Find E (X) Answer: 4

(b) Find E (X2) Answer: 1 Note that E(X2) ~ [E(X)]218).
(c) Find E(X-X) Answer: 0 Note: By defini don

4
E(X-X)'" E P (X -X)

i=l i i

(d)
.;.,2 1Find E(X-X) Answer: 2). Note: : By definition

4
E(X-X)2 ••• EP (X _X)2

i-I i i
,

Exercise 3.2. From the following set of three values of Yi one

value is to be selected with a probability Pi:
Yl = -2 Y •••2 Y = 42 3
p" = 1/4 p" •••2/4 P 3' = 1/41 2

(a) Find E(Y) Answer: 112
(b) 1 3/16. 1

'"E~~)Find E(y) Answ'er : Note: E(Y)
(c) Find E(y_y)2 Answer: 414

3.2 EXPECTED VALUE OF THE SUM OF TWO RAl'IDOMVARIABLES

The sum of two or more random variables is also a random variable.

If X and Yare two random variables, the expected value of X + Y is equal

to the expected value of X plus the expected value of Y:E(X+Y) •••E(X)+E(Y).

Two numerical illustrations will help clarify the situation.

Illustration 3.3. Consider the two random variables X and Y in

Exercises 3.1 and 3.2:
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x a 2 PI 2 YI ••-2 P" I.. - =7;I 6 1

X •• 5 P2
2 Y •• 2 P" 2.. - .. -2 6. 2 2 4

X3 - 4 P3
1 Y ••4 P" 1.. - .. -
6 3 3 4

X4 a 6 P4
1.. -
6

Suppose one element of the first set and one element of the second

the two selections are independent. lIenee by definition

set are selected with probabilities as li5ted above. t\~at is the expected

value of X + Y? The joint probability of getting.Xi and Yj is PiP; because

, I~ I

, ~I ,

4 3
E(X + Y) a ~ r ~iPj" (Xi + Yj)

i-I j-l

The possible values of X + Y and the probability of each are as follows:

X+Y PiP; X+Y PiL

Xl + Y 1 - 0 PIPi
2 X + Y - 2 P3Pi I

a- .. -24 .", 3 1 24

Xl + Y 2 4 PIPi 4 X3 + Y 2 = 6 P3Pi 2- -- =-24 24

Xl + Y3
••6 PIP) 2 X

3
+ Y

3
0: 8 P3P:3 I0:- .. -24 24

X2 + Yl - 3 P2Pi 2 X4 + Y 1 ••4 Pli
1.- =-24 24

X2 + Y2 • 7 P2Pi 4 X4 + Y2 •• 8 P4Pi 2.- --24 24

X2 + Y3 - 9 P2P:3•• ~4 X4 + Y 3 10 P4P:3 I= 10- 24

As a check the sum of the probabilities must be 1 if all possible

sums have been listed and the probahility of each nas been correctly

(3.3)

determined. Substitutin~ the values of Xi + Yj and PiP; in Equation (3.3)

we obtain 5.5 as follows for expected value of X + Y:
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From Exercises 3.1 and 3.2 we have E(X) = 4 and E(Y) = 1.5. There-

fore, E(X) + E(Y) = 4 + 1.5 = 5.5 which verifies the earlier statement

that E(X + Y) - E(X) + E(Y).

Illustration 3.4. Suppose a random sample of two is selected with

replacement from the population of four elements used in Exercise 3.1.

.,

Let xl be the first value selected and let x2 be the second. Then xl and

x2 are ;random variables and xl + x2 is a random variable. The possible

values ~f xl +i x2 and the probability of each, P(xl ,x2).are listed below •

Notice that each possible order of s~lection is treated separately.
"," 'I f , !' :1 r! "

Xl Xl 4/36

Xl X2 4/36

Xl X3 2/36

Xl X4 2/36

X2 Xl 4/36

4

7

6

8

7

Xl x2 P(xl,x2)
+--
!
I

X3 Xl 2/36

X3 X2 2/36

X3 X3 1/36

X3 X4 1/36

X4 Xl 2/36

6

9

8

10

8

By definition E(xl + x2) is

11

12

10

2/36

1/36

1/36

9

11

104/36

2/36

2/36

442 1
36(4) + 36(7) + 36(6) + ... +16(12) = 8

In Exercise 3.1 we found E(X) - 4. Since xl is ~he same random variable

as X, E(x1) - 4. Also, x2 is the same random variable as X, and E(x2) - 4.

Therefore, E(x1) + E(x2) - 8, which verifies that E(xl+x2) = E(X1) + E(x2).

In general if X and Yare two random variables, where X might equal

Xl' ••• '~ and Y might equal Yl, ••• ,YM, then E(X + Y) = E(X)+E(Y). The
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NM
proof is as follows: By definition E(X+Y) - LL Pij(Xi+Yj) where Pij is

ij

According to
the probabi~ity of

summation is over

getting the sum Xi + Yj,and EEPij • 1.

all possible values of Pij(Xi+Yj).

The double

'••..••• t • 1 ':t •••....•,' '~.,'..:,"::~i~~;~i:
'l~~:':.;, . j', :.~ ••••!

the rules for summation we may write

(3.4)

In the first term 'on the n:~ht, Xi is 'constant with regard to the summation
" . Iover j; and in the''second "term on the 'right, Y j is constant with regard

I,' I j 11 t' I \. 'I II, ,I I ,1 t, I I' • Ito the summation over 1. Therefore, 'the ri'ght-hand side of Equation (3.4)
, ':can be written as ""

M N
And, since r Pij - Pi and E Pij - P , Equation (3.4) becomes

j i j

N M
By definition r XiPi - E(X) and r YjPj - E(Y) •

i j

Therefore E(X+Y) - E(X) + E(Y) •
If the proof is not clear write the values of Pij(Xi+Yj) in a matrix

format. Then, follow the summation manipulations in the proof.

The above result extends to any number of rand~m variables; that is,

the expected value of a sum of random variables is the sum of the expected

values of each. In fact, there is a very important theorem that applies

to a linear combination of random variables.
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Theorem 3.3. Let u - alul + •••+ ~~, where uI' ••• '~ are random

variables and al'."'~ are constants. Then

or in summation notation

k k
E(u) - E E aiui - E aiE(ui)

i i

The generality of Theorem 3.3 is impressive. For example, with refer-

ence to sampling from a population Xl' ••• ' XN, ui might be the value of X

obtained at the first draw, u2 the value obtained at the second draw, etc.
-, ~.
" ',$'. LJ J I :1The constants could be weights. Thus, in this case~' 'uwould be a weighted

average of the sample measurements. , - -Or, suppose xl,x2' ••• '~ are averages

from a random sample for k different age groups. The averages are random

variables and the theorem could be applied to1any linear combination of the

random variable.

"" ,averages. In fact ui could be any fWlction of random variables.
~l\.

}jlil;t-

the only condition on which the theorem is based is that u~~~t
~'

That is,

be a

Illustration 3.5. Suppose we want to find the expecte~ v~ue of
2·'(X + Y) where X and Yare random variables. Before Theorem 3.3 .can be

applied we must square (X + Y). Thus E(X + y)2 _ E(X2 + 2XY + y2) •

The application of Theorem 3.3 gives E(X + y)2 - E(X)2 + 2E(XY) + E(y)2.

Illustration 3.6. We will now·show that

E(X-X)(Y-Y) - E(XY) - XY where E(X) - X and E(Y) - Y

Since (X-X) (Y-Y) - XY - XY - XY + XY we have

E(X-X)(Y-Y) - E(XY-XY-xY+XY)

and application of Theorem 3.3 gives

E(X-X)(Y-Y) - E(XY) - E(XY) - E(YX) + E(XY)
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Since X and Yare constant, E(XY) - X E(Y) - XY, E(YX) = YX, and E(XY) - XY.

Therefore, E(X-X)(Y-V) = E(XY) - Xi
Exerc~ 3.3. Suppose E(X) = 6 and E(Y) = 4. Find

(a) E(2X+4Y) Answer: 28

(b) [E(2X)]2 Answe r : 144

(c) IEfi) Answer: 2

(d) E(5Y-X) Answer: 14

Exercise 3.4. Prove the following, assuming E(X) = X and E(Y) - Y:
(a) E(X-X):= 0

(b) E(aX-bY) + cE(Y) = aX + (c-b)Y

(c) E[a{X-X) + b(Y-Y)} := 0

(d) E(X+a)2:= E{X2) + 2aX + a2

(e) E(X-X)2. E{X2) _ X2

" '

I •

(f) 'E{aX+bY) := 0 for any values of a and b if E{X) • ~ and E{Y) ,. O.

3.3 EXPECTED VALUE OF AN ESTIMATE

Theorem 3.3 will now be used to find the expected value of the mean

of a simple random sample of n elements selected without replacement from

a population of N elements. The term "simple random sample" implies equal

probability of selection without replacement. The sample aver~e is

n

thwhere Xi is the value of X for the i element in the sample. Without

loss of generality, we can consider the subscript of x as corresponding
thto the i draw; i.e., Xl is the value of X obtained on the first draw,

x2 the value on the second, etc. As each Xi is a random variable, x
is a linear combination of random variables. Therefore, Theorem 3.3

applies and
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E(x) • 1[E(xl) +•.• + E(x )]
n n

In the previous chapter, Section 2.6, we found that any ~iven element of
I ~the population had a chance of N of being selected on the i draw.

1This means that xi is a random variable that has a probability equal to N

of being equal to any value of the population set Xl" •• '~. Therefore,

important properties of an average from a simple random sample. Inciden-

tally, E(x) •• X whether the sampling is with or without replacement.

•..• j j" Hence, E(x) •• X + ••• + X-X •
n

• E(x ) •• Xn

The fact that E(x)- X is one of· the very

Definition 3.3. A parameter is a quantity computed from all values

in a population set. The total of X, the average of X, the proportion of

elements for which Xi<A, or any other quantity computed from measurements

including all elements of the population is a parameter. ·The numerical

value of a parameter is usually unknown but it exists by definition.

Definition 3.4. An estimator is a mathematical formula or rule for

making an estimate from a sample. The formula for a sample average,
EXix - --- , is a simple example of an estimator.
n:'~:;~r~"

;"
". ~. the parameter X

It provides an estimate of

I' Definition 3.5. An estimate is unbiased when its expected value

equals the parameter that it is an estimate of. In the above example, x

is an unbiased estimate of X because E(x) •• X.
Exercise 3.5. Assume a population of only four elements having values

of X as follows: Xl" 2, X2 ••5, X3 •• 4, X4 ••6. For simple random samples

of size 2 show toat the estimator Nx provides an unbiased estimate of the

population total, EXi •• 17. List all six possible samples of two and
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calculate Nx for each. This will p,ive the set of values that the random

variable Nx can be equal to. Consider the probability of each of the

possible values of Nx and show arithmetically that E(Nx) = 17.

A sample of elements from a population is not always selected by

using equal probabilities of selection. Sampling with unequal probability

is complicated when the sampling is without replacemen~so we will limit

our discussion to sampling with replacement.

Illustration 3.7. The set of four elements and the associated prob-

abilities used in Exercise 3.1 will serve as an example of unbiased

estimation when' samples of two elements are selected with unequal prob-

ability and with replacement. Our'estimator of the population total,

2+5+4+6 - 17, will be x'"
to, ,. .. ---

n
The estimate x'" is a random variable •

Listed below are the set of values that x'" can equal and the probability

of each value occurring.

Possible Samples ~ i
Xl Xl 6 4/36

Xl x2 10.5 8/36

Xl x3 15 4/36

Xl x4 21 4/36

x2 x2 15 4/36

Xl x3 19.5 4/36

x2 x4 25.5 4/36

x3 x3 24 1/36

x3 x4 30 2/36

x4 x4 36 1/36
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Exercise 3.6. Verify the above values of xj and Pj and find the

expected value of x'. By definition E(x') m EPjxj. Yaur answer shauld

be 17 because x' is an unbiased estimate af the papulatian tatal.

TO'put sampling with replacement and ~nequal prababilities in a

general setting, assume the papulatian is XI, •••,Xj'••• '~ and the selec-

tian prababilities are Pl, •••,Pj,••• ,PN• Let xi be the value af X for
ththe i element in a sample af n elements .andlet Pi be the prabability

io •• ,,"

'which that element had afbeing selected. Then x' •• is an unbiased

We will naw shaw that
'IJ I"" ~1"'l'111';~~:~!I!~: ~~lli~~:1'f'-j1

estimate af the populatian tatal.
',~ i:: I, I, '"I"

'"x

TO' facilitatec~mparisan af x' with u in Thearem 3.3, x'"may be

written as fallows: :-,.. , .,,:!!
1 Xl I xn•. .:::-<-. ) -+ ••• + -(-)n PI . n Pn

1· XiIt is now clear that at ••nand ui •• Therefare,
Pi

1 Xl xn
E(x"')·••-[E(-) +••• + E(-)] (3.5)

n PI Pn
XlThe quantity which is the autcame af the first randam selectian fram
PI

" the papulatian, is a randam variable that might be equal to'anyone of the
Xlset af values PI

XlThe prabability that
PI

X.
equals --1 is p .•

Pj J

Therefare, by definition

N
•• E X

j j

Since the sampling is with
Xlrandom variable as PI

X.
1replacement it is clear that any is the same

Pi
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Therefore Equation (3.5) becomes

1 N N
E(x") • -[E ~j +•.• + E Xjl

n j j

Since there are n terms in the series it follows that

N
E(x") • E X

j
•

j

equal to the population mean •

"....,.,,' ::. )""
;·o!:!',.l

,,;"q~~;:~;;"
•.•. ,),11'"' ,~,; •

.,' '..:, '" ,~

Exercise 3.7. x"As a corollary show that the expected value of - isn r..

By this time. you should be getting familiar with the idea that an

estimate from a probability sample is a random variable. Persons respon-

sible for the design and selection of samples and for making estimates

from samples are concerned "about the set of values, and associated

probabilities, that an estimate from a sample might be equal to.

Definition 3.6. The distribution of an estimate generated by prob-
.'.ability sampling is the sampling distribution of the estimate.
",The values of xj and Pj in the numerical Illustration 3.7 are an

example of a sampling distribution. Statistician~ are primarily inter-

, -
ested in three characteristics of a sampling distribution: (1) the mean

(center) of the sampling distribution in relation to the value of the

parameter being estimated, (2) a measure of the variation of possible

values of an estimate from the mean of the sampling distribution, and

(3) the shape of the samplinr. distribution. We have been discussing the

first. \~en the expected value of an estimate equals the parameter being

estimated, we know that the mean of the sampling distribution is equal to

the parameter estimated. But, in practice, values of parameters are

generally not known. To judge the accuracy of an estimate, we need
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information on all three characteristics of the sampling distribution.

Let us turn now to the generally accepted measure of variation of a random

variable •.

3.4 VARIANCE OF A RANDOM VARIABLE

The variance of a random variable, X, is the average value of the squares
- 2of the deviation of X from its mean; that is, the average value of (X-X) •

The square root of the variance is the standard deviation (error) of the

variable.

Definition 3.7. In terms of expected values, the variance of a random
- 2 -variable, X, is E(X-X) where E(X) - X. Since X is a random variable,

(X_X)2 is a random variable and by definition of expected value,

. 1In case Pi .- N we have the more familiar formula for variance, namely,

Commonly used symbols for variance include: (i, oi, v2, s2, Var(X)

E(Xi-X)2
Variance is often defined as N-land VeX). This will be discussed

in Section 3.7.

3.4.1 VARIANCE OF THE SUM OF TWO INDEPENDENT RANOOM VARIABLES

Two random variables, X and Y,are independent if the joint probability,

Pij, of getting Xi and Yj is equal to (Pi)(Pj), where Pi is the probability

of selecting Xi from the set of values of ~ and Pj is the probability of

selecting Yj from the set of values of Y. The variance of the sum of two

independent random variables is the sum of the variance of each. That is,
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Illustration 3.8. In Illustration 3.3, X and Y were independent. We

Fromhad listed all possible values of Xi+Y
j

and the probability of each.

that listing we can readily compute the variance of X+Y. By definition

(3.6)

Substituting in Equation (3.6) we have

2 2 2 4 212°X+y'" 24(0-5.5) + 24(4-5.5) + •••+ 24(10-5.5)

The variances of X and Yare computed as follows:

85--12

7
'" -3

2

° -Y
- 2 1 2 2 212E(Y-Y) '"4(-2-1.S) + 4{2-l.S) + 4{4-l.5) 19--4

2 2 7 19 85We now have Ox + 0y - 3' + ""4" - 12 which verifies the above statement that
the variance of the sum of two independent random variables is the sum of
the variances.

Exercis~. - - 2 2 - - 2Prove that E[{X+Y)-{X+Y)] '"E{X+Y) - (X+Y) • Then

· ,
, .

calculate the variance of X+Y in Illustration 3.3 by usin~ the formula
2 2 - - 20X+Y '"E(X+Y) - (X+Y). The answer should agree with the result obtained

in Illustration 3.8.

Exercise 3.9. Refer to Illustration 3.3 and the listing of possible

values of X + Y and the probability of each. Instead of Xi+Y
j

list the

products (Xi-X){Yj-Y) and show that E(Xi-X)(Yj-Y) '"O.

Exercise 3.10. Find E{X-X) (Y-Y) for the numerical example used in

Illustration 3.3 by the formula E(XY) - XY'which was derived in Illustra-

tion 3.6.
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3.4.2 VARIANCE OF THE SUM OF TWO DEPENDENT RANDOM VARIABLES

The variance of dependent random variables involves covariance which

is defined as· follows:
Definition 3.8. The covariance of two random variables, X and Y, is

E(X-X) (Y-Y) where E(X) - X and E(Y) - Y. By definition of expected value

where the summation is over all possible values of X and Y.

Symbols commonly used for covariance are axy, Sxy' and Cov(X,Y).

Since (X+Y) -. (X+Y) - (X-X) + (Y-Y) we can derive a formula for the

variance of X+Y as follows:

2 - - 2" . ~. 0X+Y· E[ (X+Y) ,- (X+Y)]
11 IJ~ !I::'!I'" .,E[(X-X)'+ (y_y)]2

:;!~;JI: ' •• E[ (X-X) 2 + (Y_Y) 2 + 2(X-X)(Y-Y)]

Then, according to Theorem 3.3,

and by definition we obtain,

222aX+Y • Ox + 0y + 20xy _

2Sometimes 0xx is used instead of Ox to represent variance. Thus

For two independent random variableS'Pij • PiPj. Therefore

Write out in longhand, if necessary, and be satisfied that the following

is correct:
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(3.7)

which pro~es that the covariance 0xy is zero when X and Yare independent.

Notice that in Equation (3.7) LPi(Xi-X) - E(X-X) and
i

whic:h~ for independent randpm variables~ proves that

LP (Y -Y) - E(Y-Y)
j j j

E(X-X)(Y-Y) -

Var(x)

E(X-X) E(Y-Y). Whenworking with independent random variables the following

important theorem is frequently very useful:

Theorem 3.4. The expected vnlue of the product of independent random

variables ul~ u2~"'~ ~ is the product of their expected values:
" I

E(ulu2"'~) - E(ul)E(u2)···E(~)

3.5 VARIANCEOF ANESTIMATE

The variance of an estimate from a probability sample depends upon

the method of sampling. Wewill derive the formula for the variance of x,

the mean of a random sample selected with equal probability ~ with and

without replacement. Then~ the variance of an estimate of the population

total will be derived for sampling with replacement and unequal probability

of selection.

3.5.1 EQUALPROBABILITYOF SELECTION

with equal probabilities and with replacement from a population of N~ is:

N
E(Xi-X) 2

2 i
where Ox • --N---

The proof follows:

By definition, Var(x) • E[x-E(x)]2. Wehave shown that E(x) - X. Therefore,

- - - 2Var(x) - E(x-X). By substitution and algebraic manipulation~ we obtain
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Xl+· ••+x 2
Var(x) a E( n - X]

n

(X1-X)+ •••+(x -x.) 2
a E{ n ]

n

n1 - 2 --
a - E [ r (x -X) + t r (X' -X)(x -X)].

nZ i-I i i+j i j

Applying Theorem 3.3 we now obtain

In.series form, Equation (3.8) can be written 88

- 1 -2 -2 '- - '--Var(x)- ~ (E(xl-X) + E(xZ-X) +•••+ E(xI-X)(x2~X) +E(Xl-X)(x3-X)+ ••• ]
n

_ 1 n - 2 __
Var(x) • ~ [EE(Xi-X) + t tE(xi-X)(xj-X)]

n i-I i+j : ,
, (3.•8)

Since the sampling is with 'replacement xi and xj,are i~dependent. and

the expected value of all ~f the product terms is 'zero".!For example,.___ . : _ ' .. I.: _" -H~.'~ .. _ '
E(XCX)(x2-X) - E(xl-X) E(x2-X) and we know that E(Xl-X) and, E(X2-X) are

- 2 ' ,I' Izero. Next, consider E(Xl-X) • We have already shown that Xl is a

random variable that can be equal to anyone of the population set of

values Xl' ••• '~ with equal probability. Therefore

2
- aX

, '\
The same argument applies to x2' x3' et,c. Therefore,

222 . -- aX + ••• + ax - nax and Equation (3.8) reduces to Var(x)
2

aX
a-

n

The mathematics for finding the variance of x when the sampling is

without replacement is the same as sampling with replacement down to and

including Equation (3.8). Toe expected value of a product term in Equation

(3.8) is not zero because Xi and xj are not independent. For example, on
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1the first draw an element has a probability of N of being selected. but

on the second draw the orobability is conditioned by the fact that the

element se~ected on the first draw was not replaced. Consider the first

product term in Equation (3.8). To find E(XI-X) (Xl-X) we need to consider

the set of values that (xl-X)(x2-X) could be equal to. Reference to the

fol10win~ matrix is helpful:
, "

rA~.J· ;-t '~ j' ';':"~

'~f~
,-I,. ,

(X _X)2
1

(X2-X) (Xi-X)

• ,,': I

(Xl-X)(X2-X)
- 2

(Xl-X) ...
(Xl-X)(~-X)

(X2-X)(~-X)

."

.•• ,\ ! i t ~ ~ J,

The random variable (x1-X,)(x2-X) has an equal probabi1~ty of beinR tanY"~i~:';C
the products in the above matrix, except for the squared terms on the ~ain

diagonal. There are N(N-l) such products. Therefore.

E(x -X)(x -X)1 2

N N
r r (Xi-X)(Xj-X)

...!!L _
N(N-1)

According to Equation (1.9) in Chapter 1,

N N
r r (Xi-X)(Xj-X)
i+j

Hence,

E(x -X)(x -X)1 2 .. -

NreX _X)2
i i

N(N-l)
2Ox

•..- N-1

The same evaluation applies to all other product terms in Equation (3.8).

There are n(n-l) product terms in Equation (3.8) and the expected value of

each is
2Ox

- --N-1 Thus, Equation (3.8) becomes



Var(x)
2

1 n _ 2 aX
••-- [~ E(x -X) - n(n-l) N-l]

n2 i i
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- 2 2Recognizing that E(xi-X) - aX and after some easy al~ebraic operations

the answer as follows is obtained:
2

aXVar(x) ~-n.. --N-l n
(3.9)

Co,

N-nThe factor N-l is called the correction for finite population because it

does not appear when infinite populations are involved or when sampling

with replacement which is equivalent to sampling from an infinite population.

For two characteristics, X and Y, of ,elements in the same simple random

sample, the covariance of x and y is given by a formula analogous to

Equation (3.9); namely,

N-n.--N-l (3.10)

j~·5.2 . UNEQUAL PROBABILITY OF SELECTION

In Section 3.3 we proved that is an unbiased es timate

of the population total. This was for sampling with replacement and

unequal probability of selection. We will now proceed to find the vari-

ance of x'" •

By definition Var(x"') == E[x"'- E(x",)]2 •

E(x"')••X, it follows that

N
Let X == ~ Xi •

i
Then since

Xl xn-- + .•• + --PI Pn
Var(x"')••E[-----

n
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Applying Theorem 3.3, Var(x~) becomes

(3.11)

,,'

·I.~; '''. :;. ,I~ l~•••• 'j,1,o,l.

I·,::'t··~tf

Notice the similarity of Equations (3.8) and (3.11) and that the steps

leading to these two equations were the same. Again, since the sampling

is with replacement, the expected value of all' product terms in Equation

(3.11) is zero. Therefore Equation (3.11) becomes
;.I:

1 n xi 2Var(x~) - 2" [t E(-- X) ]
n i Pi

,; I

E(
Xi ;_,X) 2 N I Xi" . ,,2 ,;By definition - r. P (- - X)Pi i i Pi

Therefore Var(x~) • (3.12)

~tf

of x' for samples of two (that is, n - 2) using Equation (3.12). (b) Th~n

turn to Illustration 3.7 ,and compute the variance of x~ from the actual

values of x~. Don't overlook the fact that the values of x' have unequal

probabilities. According to Definition 3.7, the variance of x~ is

10
I Pj(xj - X)2 where X - E(x~), xj is one of the 10 possible values of x',
j
and Pj is the probability of xj •

3.6 VARIANCE OF A LINEAR COMBINATION

Befo~e pre,senting a general theorem on the variance of a linear

combination of random variables, a few key variance and covariance rela-

tionships will be given. In the followin~ equations X and Yare random

variables and a, b, c, and d are constants:
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Var(X+a) • Var(X)

Var(aX) • a2Var(X)
2 '.Var(aX+b) • a Var(X)

Cov(X+a,Y+b) • Cov(X,Y)

Cov(aX,bY) • abCov(X,Y)

Cov(aX+b,cY+d) - acCov(X,Y)

Var(X+Y) - Var(X) + Var(Y) + 2Cov(X,Y)

Var(X+Y+a) - Var(X+Y)

Var(aX+bY) - a2Var(X) + b2Var(Y) + 2abCoy(X,y)

Illustration 3.9. The above re1ations~ips are easily verified by
" • , I ': Ij~ , I ~ ': I' '

using the theory of expected values. For example"

Var(aX+b) - E[aX+b-E(aX+b)]2

- E[aX+b-E(aX)-E(b)]2
I'"

- E[aX-aE(X)]2

- E[a(X-X)]2

- a2E(X_x)2 - a2Var(X)

Exercise 3.12. As in Illustration 3.9 use the theory of expected
.values to prove that

Cov(aX+b,cY+d) • acCov(X,Y)

As in Theorem 3.3, let u· a1u1+"'+~~ where a1""'~ are constants
and u1' ••••~ are random variables. By definition the variance of u is

Var(u) - E[u-E(u)]2

By substitution

Var(u) 2- E[a1u1+···+~~-E(a1u1+···+~~)]
- - 2= E[a1 (u1-u1)+ •••of \ (~-~)] where
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By squarinp; the quantity in [ ] and considering the exnected values of

the terms in the series, the following result is obtain'ed.

Theorem 3.5. The variance of u, a linear combination of random

variables, is ~iven by the following equation

2 'where 0i is the variance of ui and 0ij is the covariance of ui and uj•

Theorems 3.3 and 3.5 are very useful because ma~y estimates from

probability samples are linear comoinations of random variables.

Illustration 3.10. Suppose for a srs (simple random sample) that

data have been obtained for ,two characteristics X and Y, the sample

values being xl"."xn and Yl"'.'Yn' What is the variance of x-y?
From the theory and results that have been presented one can proceed

immediately to write the answer. From Theorem 3.5 we know that Var(x-y) -

Var(x) + Var(y) -2Cov(x,y). From the sampling specifications we know the

variances of x and y and the covariance. See Equations (3.9) and (3.10)

" ,,':.. ,;' .•,

Thus, the following result is easily obtained:
- - N-n 1 2 2Var(x-y) - (N-l) (n)(aX + 0Y - 20xy)

Some readers might be curious about the relationship between covar-

iance and correlation. By definition the correlation between X and Y is

(3.13)

r -XY
Cov(X,Y)

IVar(X)Var(Y)
=

Therefore, one could substitute rA~ 0XOy for 0xy in Equation (3.13).

Exercise 3.13. In a statistical publication suppose you find 87

bushels per acre as the yield of corn in State A and 83 is the estimated

yield for State B. The estimated standard errors are given as 1.5 and



87

2.0 bushels. You become interested in the standard error of the differ-

cnce in yield between the two States and want to know how larr,e the

estimated-difference is in relation to its standard error. Find the

standard error of the difference. You mav assume that the two yield

estimates are independent because the sample selection in one State was

completely independent of the other. Answer: 2.5.

have already recognized the application of Theorems 3.3 and 3.5 to several

:~~:~~~~~~~:"~

:~~'~:ii
Illustration 3.11. No doubt students who are familiar with sa~ling

.,
samplinr, plans and methods of estimation. For exaMPle, for stratified

random samp1in~an estimator of the population total is

where Ni is the population nUMber of samplin~ units in the ith stratum

and xi is the average per sampling unit of characteristic,~ from a sample
thof ni sampling units from the i stratum. Accordinr, to Theorem 3.3

E(x~) = Er~ixi = rNiE(Xi)

If the sampling is such that E(Xi) = X. for all strata, x~ is an unbiased
1

There are no covariance terms in Equation (3.14) because the sample selection

I')A~; ..I,
,t ..:,.;:;
\(.;~',.

estimate of the population total. Accordinr, to Theorem 3.5
~ 2 - .2-Var(x) - ~l Var(x1) +••• + Nk Var(~) (3.14)

in one stratUM is independent of another stratum. AssuMin~ a srs fro~ each

Var(x~)

stratum, Equation (3.14) becomes
2<1J

-- +... +
n1

? . thwhere <11: is the variance of X amonp,sampling units within the 1 stratum.
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Illustration 3.12. Suppose xl' ••• '~ are independent estimates of
2the same quantity,T. That ~s,E(xi) - T. Let 0i be the variance of xi.

Consider a weighted average of the estimates, namely

where 1:wi - 1. . Then

(3.15)

That is, for any set .of wei~hts where 1:wi - 1 the expected value of x'" is

T. How should 'the weights be chosen?

The variance of x'"is
. V ( ...) 2 2 + + 2 2ar x - wlol ••• wk Ok

If we weight the estimates equally,wi - ; and the variance of x'" is
2

1 tOi
Var(x"') - k [T]

which is the average variance divided by k. However, it is reasonable to

give more weight to estimates having low variance. Using differential

calculus we can find the weights which will minimize the variance of x ..••

The optimum weights are inversely proportional to the variances of the

(3.17)

estimates. That is, Wi

As an example, suppose one has two independent unbiased estimates of

the same quantity which originate from two different samples. The optimum

weighting of the two estimates would be
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As another example, suppose xl' ••• '~ are the values of X in'a sample

of k sampling units selected with equal probability and with replacement.

In this c~e each xi is an unbiased estimate of X. If we let wi - ~ ' x~

is X, the simple average of the sample values. Notice" as one would expect,

Equation (3.16) reduces to E(x) - X. Also, since each estimate, xi ' is the

same random variable that could be equal to any value in the set Xl' •••~'

lIence,
,•.!. ",::i '<,f~,7

J, ~~

•

-e,

it is clear that all of

Equation (3.17) reduces

2 2the ,ai's must be equal to a -

02
to ~ ..I which, a~rees with, the first part of Section,

Exercise 3.14. If you equate xi in Equation
1Section 3.5.2 and let Wi - n and k - n,

3.5.1.
Xi(3.15) with --. inPi

then x~ in Equation (3.15) is
, ,I

the

~same as x n in Section 3.5.2. Show that in this case Equation (3.17)

becomes the same as Equation (3.12).

3.7 ESTIMATION OF VARIANCE
All of the variance formulas presented in previous sections have

involved calculations from'a population set of values. In practice, we •
,'!!

have data for only a sample. Hence, we must consider means of estimatinR.

variances from sample data.

3.7.1 SIMPLE RANDOM SAMPLING

In Section 3.5.1, we found that the variance of the mean of a srs is
2aX

Var ex) N-n--N-l n
(3.18)

where 2
a -X



As an estimator

n _ 2
r(xi-x)

2 i
of aX ' --n-- seems like a natural first choice for

90

consideration. However, when samp1inr finite populations, it is custoMary

to define variance among units of the population as follows:

N _ 2
E(Xi-X)
i

N-1

. 2will become apparent when we find the expected value of s as follows:
2The formula for s can be written in a form that is more convenient

,. --,'.
.(,r~:",,-:~,~'~' ,~ "U
, ,.,..., ,~ ' .~.,

','·'·t. ' ..'
••"~~~~')c~~~E.~;?'..~~i:'~:'... ~..

and to use 2s

n _ 2
E(xi-x)
i- ----n-1

. 2
as an estimator of S • A reason for this

2 ':1for finding E(s ). Thus,
n _ 2 'I "
E(x -x) 2 -2

2 i i LX - nxis - ••n-l n-1

and
2 1 n 2 -2E(s ) - n-1 [LE(xi) - nE(x )]

i

We have shown previously that Xi is a random variable that has an equal

probability of being any ,value in the set Xl""'~' Therefore

N
LX2
i i- --N and

2nEX
i---N

Hence,

We know, by

Therefore,

2 n EX~ -2
E(s ) - n-1 [~- E(x )]

2 - - 2definition, that a- - E(x - X)x
E(x-X)2 _ E(x2) _ X2

-2 2-2E(x ) - a- + X •
X

and it is easy to show that

(3.19)
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By substitution in Equation

2 n
E(s ) = -I'n-

(3.19)

1:X2
i[--

N

we ohtain

91

2 _ !'l-nsampling was srs, Ox - N-1

By definition oi
l:(X _X)2

i= ----- N

1:X2
-2i and since the spec! fled of.. --- X methodN

2 2Ox 2 n 2 N-n Ox
n ' we have E(s ) = 1 [ox - N-l -]n- n

which after simplification is
2 N 2E(s ) = N-1 Ox

Note from the above definitions of oi and S2 that

Therefore
I ~ "

2 I N 2
5 •• N-l Ox

E(s2) ••S2

, ! : I

Si ' bi d i f S2 we will n~~ substitute N-1 S2 for, nce s2 ~s an un ase est mate 0 •..•••, ' N
2Ox in Equation (3.18) which gives

52Var(x) N-n=--
N n (3.20)

Both Equations, (3.18) and (3.20), for the Var(x) give identical results
- - 2and both agree with E(x-X) as a definition of variance. We have shown

2 222that s is an unbiased estim.'lteof 5. Substituting s for S in Equation

(3.20) we have

var(x) N-n.. --
N

2s
n

(3.21)

N-1 2 , b' d i f 2N s ~s an un ~ase est mate 0 oX'

as an estimate of the variance of x. With regard to Equation (3.18),

When N~l ·s2 is substituted for

2Ox ' Equation (3.21) is obtained.

Since in Equation (3.20), N;n is exactly 1 minus the sampling fraction

and s2 is an unbiased estimate of 52, there is some advantage to using-
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2 E(X
i
-X)2

Equation (3.20) and S - U-l as a definition of variance ;uron~

sampling units in the population. -'

I

Exercise 3.15. For a small population of 4 elet:lentsl'lupposethe

values of X are Xl'" 2, X2 = 5, A3'" 3; and X4 = 6. Consider si1ll!'le

random samples of size 2. There are six Dossible samples.

(a) For each of the six samnles calculate x and 2s • That is,

find the sampling dis tribution of x and the satllT>lin~

distribution of s2.

(b) Calculate S2, then find Var(x) usin~ Equation (3.20)., ,

(c) Calculate the variance among the six values of x and compare

the result with Var(x) obtained in (b). The results should

be the same.
122(d) From the .sampling distribution of s calculate E(s ) and

2 2verify that E(s ) •••S •

3.7,.2 UNEQUAL PROBABILITY OF SELECTION

In Section 3.5.2, we derived a formula for the variance of the

estimator x" where

x" (3.22)

The sampling was with unequal selection probabilities and with replacement.

We found that the variance of-x" was given by

N Xi X)21:P (- -
i 1. PiVar(x") •••------

n

As a formula for estimating Var(x") from a sample one mi~ht be inclined,

(3.23)

as a first guess, to try a formula of the same form as EQuation (3.23) but
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that does not work. Equation (3.23) is a weighted average of the squares
Xi 2of deviations (- - X) which reflects- the unequal selection probabilities.
Pi

If one applied the same weightinS!;system in a formula for estimating

variance from a sample he would in effect be applying the weights twice;

first, in the selection process itself and second, to the sample data.

The unequal probability of selection is already incorporated into the

sat'Jplei tseH.

As in some of the previous discussion, look at the estimator as foll~is:

Xl +••• + x~

n
,~]f••.,,,~II!1 :~Ii" I .••• "

Each xi ..i~.an ~ndepe?de~t, "unbiased estimate of the population total. Since
", ' ,~. , , "

each value of x'" receives an equal weight in determining x'" it appears that
W,liIC.·.i ~';·'~I i'~~ l!Ht,-tjl I' Ii, 'I

var(x"')

the followinp.;formula for estimating Var(x") might work:
2s=-n (3.24)

where 2s ••

n
E(x"_x .•)2
i i

n-l
• I "\>: By following an approach similar to that used in Section 3.7.1, one can

prove that
2 N Xi 2

E(s ) = E P (- - X)
i i Pi

That is, Equation (3.24) does provide an unbi~qed estimate of Var(x"') in

Equation (3.23). The proof is left as an exercise.

Exercise 3.16. Reference is made to Exercise 3.1, Illustration 3.7,

and Exercise 3.11. In Illustration 3.7 the sampling distribution of x
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(See Equation (3.22» is given for saMples of 2 from the population of (

4 e1e~nts that was Riven in Exercise 3.1.
2s(a) Compute var(x~) - (Equation (3.24» for each of the 10

n

possible samples.

(b) Compute the expected value of var(x~) and compare it with the

result oh~ained in Exercise 3.11. The results should be the

same. ReMember, when findin~ the expected value of var(x'),

that the X~IS do not occur with equal frequency.
I'

3.8 RATIO OF TWO RANDOM.VARIABLES
, I

In sampling theory and practice one ,frequently encounters esti~tes

that are ratios of random variables. It was pointed out earlier that

E(~) '"~~~~ where u and ,.,'a~e rand~m"'variabie~~"1Formulas 'for the ~~pected "

value of a ratio and for the variance10f a ratio will now be presented

uw

without derivation. The formulas are approximations:
2o

E (~) .:. ~ + ~ [~
w -2

w w w

(3.25)

, '
varc;.) .:.

2p uw

uw
(3.2.6)

where

and

u - E(u)

w - E(w)

02 _ E(u_~)2
u

o
p = uw where 0 - E(u-~) (,.,-w)

uw 00 uwuw

For a discussion of the conditioDR under which Equations (3.25) and

(3.26) are ~ood approximations, reference is made to Hansen, Hurwitz, and


	page1
	images
	image1
	image2
	image3


	page2
	titles
	) 
	)t 
	i 

	images
	image1
	image2
	image3


	page3
	titles
	~,:;jt::~~.0~ 
	.. 
	-, . 


	page4
	titles
	.. 

	images
	image1
	image2
	image3
	image4


	page5
	images
	image1


	page6
	titles
	"':~f;/~~:~': ':~: 
	j 
	\ 
	r 
	-. 

	images
	image1


	page7
	images
	image1
	image2
	image3


	page8
	titles
	.~' 

	images
	image1


	page9
	titles
	f 
	x. 

	images
	image1
	image2


	page10
	titles
	- 
	-- 

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7


	page11
	titles
	,. 
	I 

	images
	image1

	tables
	table1


	page12
	titles
	6 

	tables
	table1


	page13
	titles
	,?, .' ~~#1~:~ 
	. '. -' : ... : 
	" 
	I 


	page14
	images
	image1
	image2
	image3
	image4
	image5
	image6


	page15
	titles
	.' 
	. 
	•• 

	images
	image1
	image2

	tables
	table1


	page16
	titles
	·;·,,~~·~~t·: 
	'. 

	images
	image1
	image2
	image3
	image4
	image5
	image6


	page17
	titles
	~C.~~~~·1!f 
	) 
	, 
	) 

	images
	image1
	image2

	tables
	table1


	page18
	images
	image1
	image2
	image3

	tables
	table1


	page19
	titles
	.. 
	x 

	images
	image1
	image2
	image3
	image4
	image5


	page20
	titles
	, n : ~~'I :1 

	images
	image1
	image2
	image3


	page21
	titles
	k 
	. ,' :l"'7~j~1 
	• 

	tables
	table1
	table2


	page22
	images
	image1
	image2


	page23
	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7


	page24
	images
	image1
	image2
	image3


	page25
	titles
	X 
	.. 
	•.. 
	. ~~ , . ~\ ~:,~' '~~ 
	~'.' ~;~:~~~~~~~ 

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7
	image8
	image9


	page26
	titles
	,·:,:~'··;!:t:,:,,:;~~~~ (~ 

	images
	image1
	image2
	image3
	image4

	tables
	table1
	table2


	page27
	titles
	. 
	. . . . 

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7
	image8
	image9
	image10
	image11
	image12
	image13
	image14


	page28
	titles
	. 

	images
	image1
	image2
	image3
	image4
	image5
	image6


	page29
	titles
	, ' ~ r 
	... 

	images
	image1
	image2
	image3
	image4
	image5


	page30
	titles
	x 
	.. 
	(1. 6) 
	9 

	images
	image1
	image2
	image3
	image4
	image5


	page31
	images
	image1
	image2
	image3
	image4

	tables
	table1
	table2
	table3


	page32
	titles
	';·f:~~r~1,. 
	~~~~??~~'~$: 

	images
	image1
	image2
	image3
	image4
	image5

	tables
	table1


	page33
	titles
	, .' 
	t>~ :, 'J'~" 
	.: ~tf~~~~: ~. ~~:i;t 

	images
	image1
	image2

	tables
	table1


	page34
	images
	image1
	image2
	image3
	image4
	image5


	page35
	titles
	- . 
	'1 
	.' 

	images
	image1
	image2
	image3


	page36
	images
	image1
	image2
	image3
	image4
	image5


	page37
	titles
	, . 

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7
	image8
	image9
	image10


	page38
	titles
	I·,;'~t~~;~~ 
	- - 

	images
	image1


	page39
	images
	image1


	page40
	titles
	- - 

	images
	image1
	image2


	page41
	titles
	.. 
	~:~~. ~'i.;~j~;~~~ 
	ft(*~{~ 
	, 

	images
	image1
	image2


	page42
	titles
	• 
	. . 
	. . 
	.. 

	images
	image1
	image2
	image3


	page43
	titles
	.' 
	· 
	,.------------------- 
	... 
	· 
	· 
	· . 
	----- ----------------------- ----- 
	· 
	· 
	· 
	., 

	images
	image1
	image2
	image3
	image4
	image5
	image6

	tables
	table1


	page44
	titles
	,,!.::;;1~~,ii~: 

	images
	image1
	image2

	tables
	table1


	page45
	titles
	• 
	.' 

	images
	image1

	tables
	table1


	page46
	images
	image1

	tables
	table1
	table2
	table3


	page47
	titles
	.' 

	images
	image1
	image2
	image3
	image4


	page48
	images
	image1


	page49
	titles
	• 
	,~ 

	images
	image1
	image2
	image3

	tables
	table1


	page50
	images
	image1
	image2

	tables
	table1


	page51
	titles
	... 

	images
	image1
	image2
	image3
	image4
	image5


	page52
	titles
	- - 
	- - 

	images
	image1
	image2
	image3
	image4


	page53
	titles
	( 
	(' 
	I 

	images
	image1


	page54
	titles
	- - 
	- - 

	images
	image1
	image2
	image3


	page55
	images
	image1


	page56
	images
	image1


	page57
	titles
	N ' of 

	images
	image1


	page58
	images
	image1


	page59
	titles
	. 

	images
	image1
	image2


	page60
	images
	image1
	image2

	tables
	table1


	page61
	images
	image1


	page62
	titles
	.,~, :t:~!~··(~ 

	tables
	table1


	page63
	titles
	. , 

	images
	image1


	page64
	titles
	'~~~~ 

	images
	image1
	image2


	page65
	images
	image1
	image2
	image3


	page66
	titles
	- - 

	images
	image1
	image2


	page67
	titles
	\ 
	... 

	images
	image1
	image2
	image3
	image4


	page68
	titles
	P1j .. (m y-> (f21> 
	l 
	. " 

	images
	image1
	image2


	page69
	titles
	; if~\~t~:,:, 
	I 

	images
	image1
	image2
	image3

	tables
	table1


	page70
	images
	image1
	image2
	image3

	tables
	table1
	table2


	page71
	titles
	,.' 

	images
	image1
	image2

	tables
	table1


	page72
	titles
	,. 
	; 

	images
	image1
	image2
	image3


	page73
	titles
	" 

	images
	image1

	tables
	table1
	table2


	page74
	images
	image1
	image2

	tables
	table1
	table2


	page75
	titles
	. , 
	4 

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7


	page76
	titles
	"::~i~~;~i: 

	images
	image1
	image2
	image3


	page77
	titles
	, - - 

	images
	image1
	image2


	page78
	images
	image1
	image2

	tables
	table1


	page79
	titles
	:'~:;~r~" 

	images
	image1
	image2
	image3


	page80
	titles
	74 
	,. 
	.. --- 

	images
	image1
	image2
	image3

	tables
	table1


	page81
	titles
	. 
	•. .:::-<-. ) -+ ••• + -(-) 
	PI 
	PI 

	images
	image1
	image2
	image3
	image4
	image5
	image6


	page82
	titles
	,,;"q~~;:~;;" 
	.. 
	", 


	page83
	titles
	. :~-::;':;' !~il<: ;~ 

	images
	image1
	image2


	page84
	titles
	-- 
	'" - 
	° - 
	-- 

	images
	image1
	image2
	image3
	image4
	image5


	page85
	titles
	"t\ 

	images
	image1
	image2
	image3
	image4
	image5


	page86
	titles
	where Ox • --N--- 

	images
	image1
	image2
	image3


	page87
	titles
	. 
	- a 
	, '\ 

	images
	image1
	image2
	image3


	page88
	titles
	'~f~ 
	... 
	." 
	... !!L _ 
	.. - 
	2 
	2 
	- -- 

	images
	image1
	image2
	image3
	image4


	page89
	titles
	.. -- 
	.-- 

	images
	image1
	image2
	image3
	image4
	image5
	image6


	page90
	titles
	I·,::'t··~tf 
	~tf 

	images
	image1
	image2


	page91
	titles
	) 
	~.f~"\,:,'" 1~;~~~~;~4 
	". 
	. 

	images
	image1


	page92
	images
	image1
	image2
	image3


	page93
	titles
	:~~:~ ~~~~~~:"~ 
	:~~'~:ii 
	., 
	')A~; ..I, 
	,t .. :,.;:; 
	-- + ... + 

	images
	image1
	image2
	image3


	page94
	images
	image1
	image2
	image3
	image4
	image5
	image6


	page95
	titles
	, •. !. ",::i '<,f~,7 
	• 
	-- 

	images
	image1
	image2
	image3
	image4


	page96
	titles
	.~;?' .. ~ ~i:'~:' 
	... ~ .. 
	- ---- 
	- -- 
	--- 

	images
	image1

	tables
	table1


	page97
	titles
	l:(X _X)2 
	= ----- 
	2 N 2 
	2 I N 2 
	, ' N 
	N-n 
	=-- 
	n 
	N-n 
	.. -- 

	images
	image1
	image2
	image3

	tables
	table1


	page98
	titles
	I 

	images
	image1
	image2


	page99
	titles
	•• 
	\>: 

	images
	image1
	image2
	image3


	page100
	titles
	varc;.) .:. 

	images
	image1
	image2
	image3
	image4
	image5



